Previous |  Up |  Next

Article

Title: Metrically regular square of metrically regular bipartite graphs of diameter $D = 7$ (English)
Author: Vetchý, Vladimír
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 54
Issue: 4
Year: 2018
Pages: 227-237
Summary lang: English
.
Category: math
.
Summary: The present paper deals with the spectra of powers of metrically regular graphs. We prove that there is only two tables of the parameters of an association scheme so that the corresponding metrically regular bipartite graph of diameter $D = 7$ (8 distinct eigenvalues of the adjacency matrix) has the metrically regular square. The results deal with the graphs of the diameter $D < 7$ see [8], [9] and [10]. (English)
Keyword: spectra of graphs
Keyword: squares of graphs
Keyword: distance regular graphs
Keyword: association scheme
Keyword: metrically regular graphs
Keyword: bipartite graphs
Keyword: Kneser graph
MSC: 05C50
idZBL: Zbl 06997352
idMR: MR3887362
DOI: 10.5817/AM2018-4-227
.
Date available: 2018-12-06T16:09:29Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147499
.
Reference: [1] Bannai, E, Ito, T.: Algebraic Combinatorics I.The Bejamin/Cummings Publishing Company, California, 1984. MR 0882540
Reference: [2] Barile, M., Weisstein, E.W.: Kneser Graph.From MathWorld-A Wolfram Web Resource, http://mathworld.wolfram.com/KneserGraph.html.
Reference: [3] Bose, R.C., Shimamoto, T.: Classification and analysis of partially balanced incomplete block design with two association classes.J. Amer. Statist. Assoc. 47 (1952), 151–184. MR 0048772, 10.1080/01621459.1952.10501161
Reference: [4] Bose, R.C., Shimamoto, T.: On linear associative algebras corresponding to association schemes of partially balanced designs.Ann. Math. Statist. 30 (1959), 21–36. MR 0102157, 10.1214/aoms/1177706356
Reference: [5] Cvetković, D.M., Doob, M., Sachs, H.: Spectra of graphs.Deutscher Verlag der Wissenchaften, Berlin, 1980. MR 0690768
Reference: [6] Sachs, H.: Über selbstkomplement are Graphen.Publ. Math. Debrecen 9 (1962), 270–288. MR 0151953
Reference: [7] Smith, J.H.: Some properties of the spectrum of a graph.Comb.Struct. and their Applications, Gordon and Breach, Sci. Publ. Inc., New York-London-Paris, 1970, pp. 403–406. Zbl 0249.05136, MR 0266799
Reference: [8] Vetchý, V.: Metrically regular square of metrically regular bigraphs I.Arch. Math. (Brno) 27b (1991), 183–197. MR 1189214
Reference: [9] Vetchý, V.: Metrically regular square of metrically regular bigraphs II.Arch. Math. (Brno) 28 (1992), 17–24. MR 1201862
Reference: [10] Vetchý, V.: Metrically regular square of metrically regular bipartite graphs of diameter $D=6$.Arch. Math. (Brno) 29 (1993), 29–38. MR 1242626
.

Files

Files Size Format View
ArchMathRetro_054-2018-4_3.pdf 476.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo