Previous |  Up |  Next

Article

Title: Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\geq 7$ (English)
Author: Lewis, Mark L.
Author: Liu, Yanjun
Author: Tong-Viet, Hung P.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 4
Year: 2018
Pages: 921-941
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a finite group and write ${\rm cd} (G)$ for the degree set of the complex irreducible characters of $G$. The group $G$ is said to satisfy the two-prime hypothesis if for any distinct degrees $a, b \in {\rm cd} (G)$, the total number of (not necessarily different) primes of the greatest common divisor $\gcd (a, b)$ is at most $2$. We prove an upper bound on the number of irreducible character degrees of a nonsolvable group that has a composition factor isomorphic to PSL$_2 (q)$ for $q \geq 7$. (English)
Keyword: character degrees
Keyword: prime divisors
MSC: 20C15
MSC: 20D05
idZBL: Zbl 07031688
idMR: MR3881887
DOI: 10.21136/CMJ.2018.0027-17
.
Date available: 2018-12-07T06:17:23Z
Last updated: 2021-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147512
.
Reference: [1] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups.Oxford University Press, Eynsham (1985). Zbl 0568.20001, MR 0827219
Reference: [2] : The GAP Group, GAP -- Groups, Algorithms, and Programming, Version 4.8.4.Available at http://www.gap-system.org (2016).
Reference: [3] Giudici, M.: Maximal subgroups of almost simple groups with socle $ PSL(2,q)$.Available at arXiv:math/0703685.
Reference: [4] Hamblin, J.: Solvable groups satisfying the two-prime hypothesis I.Algebr. Represent. Theory 10 (2007), 1-24. Zbl 1120.20008, MR 2292268, 10.1007/s10468-006-9032-3
Reference: [5] Hamblin, J., Lewis, M. L.: Solvable groups satisfying the two-prime hypothesis II.Algebr. Represent. Theory 15 (2012), 1099-1130. Zbl 1267.20012, MR 2994018, 10.1007/s10468-011-9281-7
Reference: [6] Huppert, B.: Endliche Gruppen.Springer, Berlin (1967), German. Zbl 0217.07201, MR 0224703, 10.1007/978-3-642-64981-3
Reference: [7] Huppert, B., Blackburn, N.: Finite Groups II.Springer, Berlin (1982). Zbl 0477.20001, MR 0650245, 10.1007/978-3-642-67994-0
Reference: [8] Isaacs, I. M.: Characters of solvable and symplectic groups.Am. J. Math. 95 (1973), 594-635. Zbl 0277.20008, MR 0332945, 10.2307/2373731
Reference: [9] Isaacs, I. M.: Character Theory of Finite Groups.Pure and Applied Mathematics 69. Academic Press, New York (1976). Zbl 0337.20005, MR 0460423
Reference: [10] Lewis, M. L., Liu, Y.: Simple groups and the two-prime hypothesis.Monatsh. Math. 181 (2016), 855-867. Zbl 06655173, MR 3563303, 10.1007/s00605-015-0839-z
Reference: [11] Lewis, M. L., Liu, Y., Tong-Viet, H. P.: The two-prime hypothesis: groups whose nonabelian composition factors are not isomorphic to PSL$_2(q)$.Monatsh. Math. 184 (2017), 115-131. Zbl 1378.20009, MR 3683947, 10.1007/s00605-016-0954-5
Reference: [12] White, D. L.: Character degrees of extensions of PSL$_2(q)$ and SL$_2(q)$.J. Group Theory 16 (2013), 1-33. Zbl 1294.20014, MR 3008309, 10.1515/jgt-2012-0026
.

Files

Files Size Format View
CzechMathJ_68-2018-4_3.pdf 372.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo