Title:
|
Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL$_2(q)$ for $q\geq 7$ (English) |
Author:
|
Lewis, Mark L. |
Author:
|
Liu, Yanjun |
Author:
|
Tong-Viet, Hung P. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
4 |
Year:
|
2018 |
Pages:
|
921-941 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a finite group and write ${\rm cd} (G)$ for the degree set of the complex irreducible characters of $G$. The group $G$ is said to satisfy the two-prime hypothesis if for any distinct degrees $a, b \in {\rm cd} (G)$, the total number of (not necessarily different) primes of the greatest common divisor $\gcd (a, b)$ is at most $2$. We prove an upper bound on the number of irreducible character degrees of a nonsolvable group that has a composition factor isomorphic to PSL$_2 (q)$ for $q \geq 7$. (English) |
Keyword:
|
character degrees |
Keyword:
|
prime divisors |
MSC:
|
20C15 |
MSC:
|
20D05 |
idZBL:
|
Zbl 07031688 |
idMR:
|
MR3881887 |
DOI:
|
10.21136/CMJ.2018.0027-17 |
. |
Date available:
|
2018-12-07T06:17:23Z |
Last updated:
|
2021-01-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147512 |
. |
Reference:
|
[1] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups.Oxford University Press, Eynsham (1985). Zbl 0568.20001, MR 0827219 |
Reference:
|
[2] : The GAP Group, GAP -- Groups, Algorithms, and Programming, Version 4.8.4.Available at http://www.gap-system.org (2016). |
Reference:
|
[3] Giudici, M.: Maximal subgroups of almost simple groups with socle $ PSL(2,q)$.Available at arXiv:math/0703685. |
Reference:
|
[4] Hamblin, J.: Solvable groups satisfying the two-prime hypothesis I.Algebr. Represent. Theory 10 (2007), 1-24. Zbl 1120.20008, MR 2292268, 10.1007/s10468-006-9032-3 |
Reference:
|
[5] Hamblin, J., Lewis, M. L.: Solvable groups satisfying the two-prime hypothesis II.Algebr. Represent. Theory 15 (2012), 1099-1130. Zbl 1267.20012, MR 2994018, 10.1007/s10468-011-9281-7 |
Reference:
|
[6] Huppert, B.: Endliche Gruppen.Springer, Berlin (1967), German. Zbl 0217.07201, MR 0224703, 10.1007/978-3-642-64981-3 |
Reference:
|
[7] Huppert, B., Blackburn, N.: Finite Groups II.Springer, Berlin (1982). Zbl 0477.20001, MR 0650245, 10.1007/978-3-642-67994-0 |
Reference:
|
[8] Isaacs, I. M.: Characters of solvable and symplectic groups.Am. J. Math. 95 (1973), 594-635. Zbl 0277.20008, MR 0332945, 10.2307/2373731 |
Reference:
|
[9] Isaacs, I. M.: Character Theory of Finite Groups.Pure and Applied Mathematics 69. Academic Press, New York (1976). Zbl 0337.20005, MR 0460423 |
Reference:
|
[10] Lewis, M. L., Liu, Y.: Simple groups and the two-prime hypothesis.Monatsh. Math. 181 (2016), 855-867. Zbl 06655173, MR 3563303, 10.1007/s00605-015-0839-z |
Reference:
|
[11] Lewis, M. L., Liu, Y., Tong-Viet, H. P.: The two-prime hypothesis: groups whose nonabelian composition factors are not isomorphic to PSL$_2(q)$.Monatsh. Math. 184 (2017), 115-131. Zbl 1378.20009, MR 3683947, 10.1007/s00605-016-0954-5 |
Reference:
|
[12] White, D. L.: Character degrees of extensions of PSL$_2(q)$ and SL$_2(q)$.J. Group Theory 16 (2013), 1-33. Zbl 1294.20014, MR 3008309, 10.1515/jgt-2012-0026 |
. |