Title:
|
On almost everywhere differentiability of the metric projection on closed sets in $l^p(\mathbb R^n)$, $2<p<\infty $ (English) |
Author:
|
Sjödin, Tord |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
4 |
Year:
|
2018 |
Pages:
|
943-951 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $F$ be a closed subset of $\mathbb R^n$ and let $P(x) $ denote the metric projection (closest point mapping) of $x\in \mathbb R^n$ onto $F$ in $l^p$-norm. A classical result of Asplund states that $P$ is (Fréchet) differentiable almost everywhere (a.e.) in $\mathbb R^n$ in the Euclidean case $p=2$. We consider the case $2<p<\infty $ and prove that the $i$th component $P_i(x)$ of $P(x)$ is differentiable a.e.\ if $P_i(x)\neq x_i$ and satisfies Hölder condition of order $1/(p-1)$ if $P_i(x)=x_i$. (English) |
Keyword:
|
normed space |
Keyword:
|
uniform convexity |
Keyword:
|
closed set |
Keyword:
|
metric projection |
Keyword:
|
$l^p$-space |
Keyword:
|
Fréchet differential |
Keyword:
|
Lipschitz condition |
MSC:
|
26E25 |
MSC:
|
46B20 |
MSC:
|
49J50 |
idZBL:
|
Zbl 07031689 |
idMR:
|
MR3881888 |
DOI:
|
10.21136/CMJ.2018.0038-17 |
. |
Date available:
|
2018-12-07T06:17:47Z |
Last updated:
|
2021-01-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147513 |
. |
Reference:
|
[1] Abatzoglou, T.: Finite-dimensional Banach spaces with a.e. differentiable metric projection.Proc. Am. Math. Soc. 78 (1980), 492-496. Zbl 0475.41035, MR 0556619, 10.2307/2042418 |
Reference:
|
[2] Asplund, E.: Differentiability of the metric projection in finite dimensional metric spaces.Proc. Am. Math. Soc. 38 (1973), 218-219. Zbl 0269.5200, MR 0310150, 10.2307/2038801 |
Reference:
|
[3] Clarkson, J.: Uniformly convex spaces.Trans. Am. Math. Soc. 40 (1936), 396-414. Zbl 0015.35604, MR 1501880, 10.2307/1989630 |
Reference:
|
[4] Federer, H.: Geometric Measure Theory.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 153, Springer, Berlin (1969). Zbl 0176.00801, MR 0257325 |
Reference:
|
[5] Fitzpatrick, S., Phelps, R. R.: Differentiability of metric projection in Hilbert space.Trans. Am. Math. Soc. 270 (1982), 483-501. Zbl 0504.41029, MR 0645326, 10.2307/1999857 |
Reference:
|
[6] Hanner, O.: On the uniform convexity of $L^p$ and $l^p$.Ark. Mat. 3 (1956), 239-244. Zbl 0071.32801, MR 0077087, 10.1007/BF02589410 |
Reference:
|
[7] Kruskal, J. B.: Two convex counterexamples: A discontinuous envelope function and a non-differentiable nearest point mapping.Proc. Am. Math. Soc. 23 (1969), 697-703. Zbl 0184.47401, MR 0259752, 10.2307/2036613 |
Reference:
|
[8] Phelps, R. R.: Convex sets and nearest points.Proc. Am. Math. Soc. 8 (1957), 790-797. Zbl 0078.35701, MR 0087897, 10.2307/2033300 |
Reference:
|
[9] Phelps, R. R.: Convex sets and nearest points II.Proc. Am. Math. Soc. 9 (1958), 867-873. Zbl 0109.14901, MR 0104139, 10.2307/2033319 |
Reference:
|
[10] Rešetnyak, Ju. G.: Generalized derivatives and differentiability almost everywhere.Mat. Sb., N. Ser. 75(117) (1968), 323-334 Russian. Zbl 0165.47202, MR 0225159 |
Reference:
|
[11] Shapiro, A.: Differentiability properties of metric projection onto convex sets.J. Optim. Theory Appl. 169 (2016), 953-964. Zbl 1342.90192, MR 3501393, 10.1007/s10957-016-0871-8 |
Reference:
|
[12] Zajíček, L.: On differentiation of metric projections in finite dimensional Banach spaces.Czech. Math. J. 33 (1983), 325-336. Zbl 0551.41048, MR 0718916 |
. |