Title:
|
Uniform convexity and associate spaces (English) |
Author:
|
Harjulehto, Petteri |
Author:
|
Hästö, Peter |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
68 |
Issue:
|
4 |
Year:
|
2018 |
Pages:
|
1011-1020 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove that the associate space of a generalized Orlicz space $L^{\phi (\cdot )}$ is given by the conjugate modular $\phi ^*$ even without the assumption that simple functions belong to the space. Second, we show that every weakly doubling $\Phi $-function is equivalent to a doubling $\Phi $-function. As a consequence, we conclude that $L^{\phi (\cdot )}$ is uniformly convex if $\phi $ and $\phi ^*$ are weakly doubling. (English) |
Keyword:
|
generalized Orlicz space |
Keyword:
|
Musielak-Orlicz space |
Keyword:
|
nonstandard growth |
Keyword:
|
variable exponent |
Keyword:
|
double phase |
Keyword:
|
uniform convexity |
Keyword:
|
associate space |
MSC:
|
46A25 |
MSC:
|
46E30 |
idZBL:
|
Zbl 07031693 |
idMR:
|
MR3881892 |
DOI:
|
10.21136/CMJ.2018.0054-17 |
. |
Date available:
|
2018-12-07T06:19:45Z |
Last updated:
|
2021-01-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147517 |
. |
Reference:
|
[1] Adams, R.: Sobolev Spaces.Pure and Applied Mathematics 65, Academic Press, New York (1975). Zbl 0314.46030, MR 0450957 |
Reference:
|
[2] Avci, M., Pankov, A.: Multivalued elliptic operators with nonstandard growth.Adv. Nonlinear Anal. 7 (2018), 35-48. Zbl 06837817, MR 3757454, 10.1515/anona-2016-0043 |
Reference:
|
[3] Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes.St. Petersbg. Math. J. 27 (2016), 347-379 translation from Algebra Anal. 27 2015 6-50. Zbl 1335.49057, MR 3570955, 10.1090/spmj/1392 |
Reference:
|
[4] Colombo, M., Mingione, G.: Regularity for double phase variational problems.Arch. Ration. Mech. Anal. 215 (2015), 443-496. Zbl 1322.49065, MR 3294408, 10.1007/s00205-014-0785-2 |
Reference:
|
[5] Cruz-Uribe, D., Hästö, P.: Extrapolation and interpolation in generalized Orlicz spaces.Trans. Am. Math. Soc. 370 (2018), 4323-4349. Zbl 06853979, MR 3811530, 10.1090/tran/7155 |
Reference:
|
[6] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017, Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8 |
Reference:
|
[7] Fan, X.-L., Guan, C.-X.: Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications.Nonlinear Anal., Theory Methods Appl., Ser. A 73 (2010), 163-175. Zbl 1198.46010, MR 2645841, 10.1016/j.na.2010.03.010 |
Reference:
|
[8] Gwiazda, P., Wittbold, P., Wróblewska-Kamińska, A., Zimmermann, A.: Renormalized solutions to nonlinear parabolic problems in generalized Musielak-Orlicz spaces.Nonlinear Anal., Theory Methods Appl., Ser. A 129 (2015), 1-36. Zbl 1331.35173, MR 3414919, 10.1016/j.na.2015.08.017 |
Reference:
|
[9] Harjulehto, P., Hästö, P.: Riesz potential in generalized Orlicz spaces.Forum Math. 29 (2017), 229-244. MR 3592600, 10.1515/forum-2015-0239 |
Reference:
|
[10] Harjulehto, P., Hästö, P., Klén, R.: Generalized Orlicz spaces and related PDE.Nonlinear Anal., Theory Methods Appl., Ser. A 143 (2016), 155-173. Zbl 1360.46029, MR 3516828, 10.1016/j.na.2016.05.002 |
Reference:
|
[11] Harjulehto, P., Hästö, P., Toivanen, O.: Hölder regularity of quasiminimizers under generalized growth conditions.Calc. Var. Partial Differ. Equ. 56 (2017), Article No. 2, 26 pages. Zbl 1366.35036, MR 3606780, 10.1007/s00526-017-1114-z |
Reference:
|
[12] Hästö, P.: The maximal operator on generalized Orlicz spaces.J. Funct. Anal. 269 (2015), 4038-4048. Zbl 1338.47032, MR 3418078, 10.1016/j.jfa.2015.10.002 |
Reference:
|
[13] Hudzik, H.: Uniform convexity of Musielak-Orlicz spaces with Luxemburg's norm.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 23 (1983), 21-32. Zbl 0595.46027, MR 0709167 |
Reference:
|
[14] Hudzik, H.: A criterion of uniform convexity of Musielak-Orlicz spaces with Luxemburg norm.Bull. Pol. Acad. Sci., Math. 32 (1984), 303-313. Zbl 0565.46020, MR 0785989 |
Reference:
|
[15] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces.Bull. Sci. Math. 137 (2013), 76-96. Zbl 1267.46045, MR 3007101, 10.1016/j.bulsci.2012.03.008 |
Reference:
|
[16] Musielak, J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034, Springer, Berlin (1983). Zbl 0557.46020, MR 0724434, 10.1007/BFb0072210 |
Reference:
|
[17] Ok, J.: Gradient estimates for elliptic equations with $L^{p(\cdot)}\log L$ growth.Calc. Var. Partial Differ. Equ. 55 (2016), Article No. 26, 30 pages. Zbl 1342.35090, MR 3465442, 10.1007/s00526-016-0965-z |
Reference:
|
[18] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces.Pure and Applied Mathematics 146, Marcel Dekker, New York (1991). Zbl 0724.46032, MR 1113700 |
. |