Previous |  Up |  Next

Article

Title: Uniform convexity and associate spaces (English)
Author: Harjulehto, Petteri
Author: Hästö, Peter
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 4
Year: 2018
Pages: 1011-1020
Summary lang: English
.
Category: math
.
Summary: We prove that the associate space of a generalized Orlicz space $L^{\phi (\cdot )}$ is given by the conjugate modular $\phi ^*$ even without the assumption that simple functions belong to the space. Second, we show that every weakly doubling $\Phi $-function is equivalent to a doubling $\Phi $-function. As a consequence, we conclude that $L^{\phi (\cdot )}$ is uniformly convex if $\phi $ and $\phi ^*$ are weakly doubling. (English)
Keyword: generalized Orlicz space
Keyword: Musielak-Orlicz space
Keyword: nonstandard growth
Keyword: variable exponent
Keyword: double phase
Keyword: uniform convexity
Keyword: associate space
MSC: 46A25
MSC: 46E30
idZBL: Zbl 07031693
idMR: MR3881892
DOI: 10.21136/CMJ.2018.0054-17
.
Date available: 2018-12-07T06:19:45Z
Last updated: 2021-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147517
.
Reference: [1] Adams, R.: Sobolev Spaces.Pure and Applied Mathematics 65, Academic Press, New York (1975). Zbl 0314.46030, MR 0450957
Reference: [2] Avci, M., Pankov, A.: Multivalued elliptic operators with nonstandard growth.Adv. Nonlinear Anal. 7 (2018), 35-48. Zbl 06837817, MR 3757454, 10.1515/anona-2016-0043
Reference: [3] Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes.St. Petersbg. Math. J. 27 (2016), 347-379 translation from Algebra Anal. 27 2015 6-50. Zbl 1335.49057, MR 3570955, 10.1090/spmj/1392
Reference: [4] Colombo, M., Mingione, G.: Regularity for double phase variational problems.Arch. Ration. Mech. Anal. 215 (2015), 443-496. Zbl 1322.49065, MR 3294408, 10.1007/s00205-014-0785-2
Reference: [5] Cruz-Uribe, D., Hästö, P.: Extrapolation and interpolation in generalized Orlicz spaces.Trans. Am. Math. Soc. 370 (2018), 4323-4349. Zbl 06853979, MR 3811530, 10.1090/tran/7155
Reference: [6] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017, Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8
Reference: [7] Fan, X.-L., Guan, C.-X.: Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications.Nonlinear Anal., Theory Methods Appl., Ser. A 73 (2010), 163-175. Zbl 1198.46010, MR 2645841, 10.1016/j.na.2010.03.010
Reference: [8] Gwiazda, P., Wittbold, P., Wróblewska-Kamińska, A., Zimmermann, A.: Renormalized solutions to nonlinear parabolic problems in generalized Musielak-Orlicz spaces.Nonlinear Anal., Theory Methods Appl., Ser. A 129 (2015), 1-36. Zbl 1331.35173, MR 3414919, 10.1016/j.na.2015.08.017
Reference: [9] Harjulehto, P., Hästö, P.: Riesz potential in generalized Orlicz spaces.Forum Math. 29 (2017), 229-244. MR 3592600, 10.1515/forum-2015-0239
Reference: [10] Harjulehto, P., Hästö, P., Klén, R.: Generalized Orlicz spaces and related PDE.Nonlinear Anal., Theory Methods Appl., Ser. A 143 (2016), 155-173. Zbl 1360.46029, MR 3516828, 10.1016/j.na.2016.05.002
Reference: [11] Harjulehto, P., Hästö, P., Toivanen, O.: Hölder regularity of quasiminimizers under generalized growth conditions.Calc. Var. Partial Differ. Equ. 56 (2017), Article No. 2, 26 pages. Zbl 1366.35036, MR 3606780, 10.1007/s00526-017-1114-z
Reference: [12] Hästö, P.: The maximal operator on generalized Orlicz spaces.J. Funct. Anal. 269 (2015), 4038-4048. Zbl 1338.47032, MR 3418078, 10.1016/j.jfa.2015.10.002
Reference: [13] Hudzik, H.: Uniform convexity of Musielak-Orlicz spaces with Luxemburg's norm.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 23 (1983), 21-32. Zbl 0595.46027, MR 0709167
Reference: [14] Hudzik, H.: A criterion of uniform convexity of Musielak-Orlicz spaces with Luxemburg norm.Bull. Pol. Acad. Sci., Math. 32 (1984), 303-313. Zbl 0565.46020, MR 0785989
Reference: [15] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces.Bull. Sci. Math. 137 (2013), 76-96. Zbl 1267.46045, MR 3007101, 10.1016/j.bulsci.2012.03.008
Reference: [16] Musielak, J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034, Springer, Berlin (1983). Zbl 0557.46020, MR 0724434, 10.1007/BFb0072210
Reference: [17] Ok, J.: Gradient estimates for elliptic equations with $L^{p(\cdot)}\log L$ growth.Calc. Var. Partial Differ. Equ. 55 (2016), Article No. 26, 30 pages. Zbl 1342.35090, MR 3465442, 10.1007/s00526-016-0965-z
Reference: [18] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces.Pure and Applied Mathematics 146, Marcel Dekker, New York (1991). Zbl 0724.46032, MR 1113700
.

Files

Files Size Format View
CzechMathJ_68-2018-4_8.pdf 295.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo