Previous |  Up |  Next

Article

Title: Zeros of a certain class of Gauss hypergeometric polynomials (English)
Author: Abathun, Addisalem
Author: Bøgvad, Rikard
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 4
Year: 2018
Pages: 1021-1031
Summary lang: English
.
Category: math
.
Summary: We prove that as $n\to \infty $, the zeros of the polynomial $$ _{2}{F}_{1}\left [ \begin {matrix} -n, \alpha n+1\\ \alpha n+2 \end {matrix} ; z\right ] $$ cluster on (a part of) a level curve of an explicit harmonic function. This generalizes previous results of Boggs, Driver, Duren et al.\ (1999--2001) to the case of a complex parameter $\alpha $ and partially proves a conjecture made by the authors in an earlier work. (English)
Keyword: asymptotic zero-distribution
Keyword: hypergeometric polynomial
Keyword: saddle point method
MSC: 30C15
MSC: 33C05
idZBL: Zbl 07031694
idMR: MR3881893
DOI: 10.21136/CMJ.2018.0055-17
.
Date available: 2018-12-07T06:20:09Z
Last updated: 2021-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147518
.
Reference: [1] Abathun, A., Bøgvad, R.: Asymptotic distribution of zeros of a certain class of hypergeometric polynomials.Comput. Methods Funct. Theory 16 (2016), 167-185. Zbl 1339.33009, MR 3503349, 10.1007/s40315-015-0131-1
Reference: [2] Andrews, G. E., Askey, R., Roy, R.: Special Functions.Encyclopedia of Mathematics and Its Applications 71, Cambridge University Press, Cambridge (1999). Zbl 0920.33001, MR 1688958, 10.1017/CBO9781107325937
Reference: [3] Bleistein, N.: Mathematical Methods for Wave Phenomena.Computer Science and Applied Mathematics, Academic Press, Orlando (1984). Zbl 0554.35002, MR 0755514, 10.1016/B978-0-08-091695-8.50001-7
Reference: [4] Boggs, K., Duren, P.: Zeros of hypergeometric functions.Comput. Methods Funct. Theory 1 (2001), 275-287. Zbl 1009.33004, MR 1931616, 10.1007/BF03320990
Reference: [5] Borcea, J., Bøgvad, R., Shapiro, B.: Homogenized spectral problems for exactly solvable operators: asymptotics of polynomial eigenfunctions.Publ. Res. Inst. Math. Sci. 45 (2009), 525-568 corrigendum ibid. 48 2012 229-233. Zbl 1182.30008, MR 2510511, 10.2977/prims/1241553129
Reference: [6] Bruijn, N. G. de: Asymptotic Methods in Analysis.Bibliotheca Mathematica 4, North-Holland Publishing, Amsterdam (1961). Zbl 0109.03502, MR 0177247
Reference: [7] Driver, K., Duren, P.: Asymptotic zero distribution of hypergeometric polynomials.Numer. Algorithms 21 (1999), 147-156. Zbl 0935.33004, MR 1725722, doi.org/10.1023/A:1019197027156
Reference: [8] Duren, P. L., Guillou, B. J.: Asymptotic properties of zeros of hypergeometric polynomials.J. Approximation Theory 111 (2001), 329-343. Zbl 0983.33008, MR 1849553, 10.1006/jath.2001.3580
.

Files

Files Size Format View
CzechMathJ_68-2018-4_9.pdf 287.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo