Previous |  Up |  Next

Article

Title: Modeling of the temperature distribution of a greenhouse using finite element differential neural networks (English)
Author: Bello-Robles, Juan Carlos
Author: Begovich, Ofelia
Author: Ruiz-León, Javier
Author: Fuentes-Aguilar, Rita Quetziquel
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 5
Year: 2018
Pages: 1033-1048
Summary lang: English
.
Category: math
.
Summary: Most of the existing works in the literature related to greenhouse modeling treat the temperature within a greenhouse as homogeneous. However, experimental data show that there exists a temperature spatial distribution within a greenhouse, and this gradient can produce different negative effects on the crop. Thus, the modeling of this distribution will allow to study the influence of particular climate conditions on the crop and to propose new temperature control schemes that take into account the spatial distribution of the temperature. In this work, a Finite Element Differential Neural Network (FE-DNN) is proposed to model a distributed parameter system with a measurable disturbance input. The learning laws for the FE-DNN are derived by means of Lyapunov's stability analysis and a bound for the identification error is obtained. The proposed neuro identifier is then employed to model the temperature distribution of a greenhouse prototype using data measured inside the greenhouse, and showing good results. (English)
Keyword: differential neural networks
Keyword: distributed parameter systems
Keyword: greenhouse temperature modeling
MSC: 93C20
MSC: 93C95
idZBL: Zbl 07031758
idMR: MR3893134
DOI: 10.14736/kyb-2018-5-1033
.
Date available: 2018-12-14T08:16:22Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147541
.
Reference: [1] Aguilar-Leal, O., Fuentes, R.Q., Chairez, I., Garcia, A., Huegel, J. C.: Distributed parameter system identification using finite element differential neural networks..Applied Soft Computing 43 (2016), 663-642. 10.1016/j.asoc.2016.01.004
Reference: [2] Baille, A., Kittas, C., Katsoulas, N.: Influence of whitening on greenhouse microclimate and crop energy partitioning..Agricultural Forest Meteorology 107 (2001), 4, 293-306. 10.1016/s0168-1923(01)00216-7
Reference: [3] Chairez, I., Fuentes, R., Poznyak, A., Poznyak, T., Escudero, M., Viana, L.: DNN-state identification of 2D distributed parameter systems..Int. J. Systems Sci. 43 (2012), 2, 296-307. MR 2862244, 10.1080/00207721.2010.495187
Reference: [4] Chen, J., Cai, Y., Xu, F., Hu, H., Ai, Q.: Analysis and optimization of the fan-pad evaporative cooling system for greenhouse based on CFD..Advances Mechanical Engrg. 6 (2014), 712-740. 10.1155/2014/712740
Reference: [5] Evans, L. C.: Partial Differential Equations..American Mathematical Soc., 2010. MR 2597943
Reference: [6] Fargues, J., Smits, N., Rougier, M., Boulard, T., Ridray, G., Lagier, J., Jeannequin, B., Fatnassi, H., Mermier, M.: Effect of microclimate heterogeneity and ventilation system on entomopathogenic hyphomycete infection of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) in Mediterranean greenhouse tomato..Biolog. Control 32 (2005), 3, 461-472. 10.1016/j.biocontrol.2004.12.008
Reference: [7] Ferreira, P. M., Faria, E. A., Ruano, A. E.: Neural network models in greenhouse air temperature prediction..Neurocomputing 43 (2002), 1, 51-75. 10.1016/s0925-2312(01)00620-8
Reference: [8] Fuentes, R., Poznyak, A., Chairez, I., Franco, M., Poznyak, T.: Continuous neural networks applied to identify a class of uncertain parabolic partial differential equations..Int. J. Model. Simul. Sci. Comput. 1 (2010), 4, 485-508. 10.1142/s1793962310000304
Reference: [9] Hasni, A., Taibi, R., Draoui, B., Boulard, T.: Optimization of greenhouse climate model parameters using particle swarm optimization and genetic algorithms..Energy Procedia 6 (2011), 371-380. 10.1016/j.egypro.2011.05.043
Reference: [10] Kwon, Y. W., Bang, H.: The Finite Element Method Using MATLAB..CRC Press, 2000. MR 2134653, 10.1201/9781315275949
Reference: [11] Perez-Cruz, J. H., Alanis, A., Rubio, J., Pacheco, J.: System identification using multilayer differential neural networks: a new result..J. Appl. Math. 2012 (2012), 1-20. MR 2910916, 10.1155/2012/529176
Reference: [12] Perez-Gonzalez, A., Begovich, O., Ruiz-León, J.: Modeling of a greenhouse prototype using PSO algorithm based on a LabView TM application..In: Proc. 2014 International Conference on Electrical Engineering, Computing Science and Automatic Control 1-6.
Reference: [13] Poznyak, A. S., Sanchez, E. N., Wen, Y.: Differential Neural Networks for Robust Nonlinear Control: Identification, State Estimation and Trajectory Tracking..World Scientific, 2001. 10.1142/4703
Reference: [14] Salgado, P., Cunha, J. B.: Greenhouse climate hierarchical fuzzy modelling..Control Engrg. Practice 13 (2005), 5, 613-628. 10.1016/j.conengprac.2004.05.007
Reference: [15] Strauss, W. A.: Partial Differential Equations: An Introduction..John Wiley and Sons Inc, 2007. MR 2398759
Reference: [16] Zhang, X. M., Han, Q. L.: Global asymptotic stability for a class of generalized neural networks with interval time-varying delays..IEEE Trans. Neural Networks 22 (2011), 8, 1180-1192. MR 3465626, 10.1109/tnn.2011.2147331
Reference: [17] Zhang, X. M., Han, Q. L.: State estimation for static neural networks with time-varying delays based on an improved reciprocally convex inequality..IEEE Trans. Neural Networks Learning Systems 29 (2018), 4, 1376-1381. 10.1109/tnnls.2017.2661862
Reference: [18] Zienkiewicz, O. C., Taylor, R. L., Zhu, J. Z: The Finite Element Method: Its Basis and Fundamentals..Elsevier Butterworth-Heinemann, 2005. MR 3292660
.

Files

Files Size Format View
Kybernetika_54-2018-5_10.pdf 862.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo