Previous |  Up |  Next

Article

Title: Robust optimal PID controller design for attitude stabilization of flexible spacecraft (English)
Author: Pukdeboon, Chutiphon
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 5
Year: 2018
Pages: 1049-1070
Summary lang: English
.
Category: math
.
Summary: This paper presents a novel robust optimal control approach for attitude stabilization of a flexible spacecraft in the presence of external disturbances. An optimal control law is formulated by using concepts of inverse optimal control, proportional-integral-derivative control and a control Lyapunov function. A modified extended state observer is used to compensate for the total disturbances. High-gain and second order sliding mode algorithms are merged to obtain the proposed modified extended state observer. The second method of Lyapunov is used to demonstrate its properties including the convergence rate and ultimate boundedness of the estimation error. The proposed controller can stabilize the attitude control system and minimize a cost functional. Moreover, this controller achieves robustness against bounded external disturbances and the disturbances caused by the elastic vibration of flexible appendages. Numerical simulations are provided to demonstrate the performance of the developed controller. (English)
Keyword: robust optimal control
Keyword: inverse optimal control
Keyword: control Lyapunov function
Keyword: extended state observer
Keyword: flexible spacecraft
MSC: 93C10
MSC: 93C95
MSC: 93D15
idZBL: Zbl 07031759
idMR: MR3893135
DOI: 10.14736/kyb-2018-5-1049
.
Date available: 2018-12-14T08:18:09Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147542
.
Reference: [1] Bharadwaj, S., Osipchuk, M., Mease, K. D., Park, F. C.: Geometry and inverse optimality in global attitude stabilization..J. Guidance Control Dynamic 21 (1998), 930-939. 10.2514/2.4327
Reference: [2] Cloutier, J. R: State-Dependent Riccati equation techniques: An overview..In: Proc. American Control Conference, Albuquerque 1997, pp. 932-936. 10.1109/acc.1997.609663
Reference: [3] DiGennaro, S.: Output stabilization of flexible spacecraft with active vibration supression..IEEE Aerop. Electron. Syst. Mag. 39 (2003), 747-759. 10.1109/taes.2003.1238733
Reference: [4] Erdong, J., Zhaowei, S.: Passivity-based control for a flexible spacecraft in the presence of disturbance..Int. J. Non-linear Mechanics 45 (2010), 348-356. 10.1016/j.ijnonlinmec.2009.12.008
Reference: [5] Freeman, R. A., Kokotović, P. V.: Inverse optimality in robust stablilzation..SIAM J. Control Optim. 34 (1996), 1365-1391. MR 1395839, 10.1137/s0363012993258732
Reference: [6] Guo, B. Z., Zhao, Z.: On the convergence of an extended state observer for nonlinear systems with uncertainty..Syst. Control Lett. 60 (2011), 420-430. MR 2841486, 10.1016/j.sysconle.2011.03.008
Reference: [7] Han, J., Huang, Y.: Analysis and design for the second order nonlinear continuous extended states observer..Chinese Sci. Bull. 45 (2000), 1938-1944. MR 1802749, 10.1007/bf02909682
Reference: [8] Han, J.: From PID to active disturbance rejection control..IEEE Trans. Ind. Electron. 56 (2009), 900-906. 10.1109/tie.2008.2011621
Reference: [9] Horri, N. M, Palmer, P., Roberts, M.: Gain scheduled inverse optimal satellite attitude control..IEEE Trans. Aerospace Electron. Systems 48 (2012), 2437-2457. 10.1109/taes.2012.6237602
Reference: [10] Hu, Q.: Sliding mode attitude control with $L_{2}-$gain performance and vibration reduction of flexible spacecraft with actuator dynamics..Acta Astronautica 67 (2010), 572-583. 10.1016/j.actaastro.2010.04.018
Reference: [11] Hu, Q., Ma, G.: Varaible structure control and active vibration suppression of flexible spacecraft during attitude maneuver..Aerospace Science Technol. 9 (2005), 307-317. 10.1016/j.ast.2005.02.001
Reference: [12] Khalil, H. K.: Nonlinear Systems..Prentice-Hall Press, 1996. Zbl 1194.93083
Reference: [13] Krstić, M., Kokotović, P. V.: Control Lyapunov functions for adaptive nonlinear stabilization..Systems Control Lett. 26 (1995), 17-23. MR 1347637, 10.1016/0167-6911(94)00107-7
Reference: [14] Krstić, M., Li, Z. H.: Inverse optimal design of input-to-state stabilizing nonlinear controllers..IEEE Trans. Automat. Control 43 (1998), 336-350. MR 1614799, 10.1109/9.661589
Reference: [15] Krstić, M., Tsiotras, M. P.: Inverse optimal stabilization of a rigid spacecraft..IEEE Trans. Automat. Control 44 (1999), 1042-1045. MR 1690553, 10.1109/9.763225
Reference: [16] Lu, K., Xia, Y., FU, M.: Controller design for rigid spacecraft attitude tracking with actuator saturation..Inform. Sci. 220 (2013), 343-366. MR 2993689, 10.1016/j.ins.2012.07.039
Reference: [17] Luo, W., Chung, Y. C., Ling, K. V.: Inverse optimal adaptive control for attitude tracking spacecraft..IEEE Trans. Automat. Control 50 (2005), 1639-1654. MR 2182713, 10.1109/tac.2005.858694
Reference: [18] Park, Y.: Robust and optimal attitude stabilization of spacecraft with external disturbances..Aerospace Sci. Technol. 9 (2005), 253-259. 10.1016/j.ast.2005.01.002
Reference: [19] Park, Y.: Inverse optimal and robust nonlinear attitude control of rigid spacecraft..Aerospace Sci. Technol. 28 (2013), 257-265. 10.1016/j.ast.2012.11.006
Reference: [20] Primb, J. A., Nevistić, V., Doyle, J. C.: Nonlinear optimal control : a control Lyapunov function and receding horizon perspective..Asian J. Control 1 (1999), 14-24. 10.1111/j.1934-6093.1999.tb00002.x
Reference: [21] Pukdeboon, C., Zinober, A. S. I.: Control Lyapunov function optimal sliding mode controllers for attitude tracking of spacecraft..J. Franklin Inst. 349 (2012), 456-475. MR 2890410, 10.1016/j.jfranklin.2011.07.006
Reference: [22] Pukdeboon, C.: Optimal sliding mode controllers for attitude stabilization of flexible spacecraft..Math. Problems Engrg. 2011 (2011) Article ID 863092, 1-20. MR 2811943, 10.1155/2011/863092
Reference: [23] Sepulchre, R., Freeman, R. A., Kokotović, P. V.: Constructive Nonlinear Control..Springer-Verlag, New York 1997. MR 1481435, 10.1007/978-1-4471-0967-9
Reference: [24] Sharma, R., Tewari, A.: Optimal nonlinear tracking of spacecraft attitude maneuvers..IEEE Trans. Control Systems Technol. 12 (2004), 677-682. 10.1109/tcst.2004.825060
Reference: [25] Shuster, M. D.: A survey of attitude representations..J. Astronaut. Sci. 41 (1993), 439-517. MR 1263144
Reference: [26] Sontag, E. D.: A universal construction of Artstein's theorem on bonlinear stabilization..Systems Control Lett. 13 (1989), 117-123. MR 1014237, 10.1016/0167-6911(89)90028-5
Reference: [27] Sontag, E. D.: Mathematical Control Theory, Deterministic Finite Dimensional Systems. Second edition..Springer-Verlag, New York 1998. MR 1640001, 10.1007/978-1-4612-0577-7
Reference: [28] Stansbery, D. T., Cloutier, J. R: Position and attitude control of a spacecraft using the state-dependent Riccati equation techniques..In: Proc. American Control Conference, Chicago 2000. 10.1109/acc.2000.879525
Reference: [29] Xin, M., Balakrishnan, S. N.: State dependent Riccati equation based spacecraft attitude control..In: Proc. 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno 2002. 10.2514/6.2002-1071
Reference: [30] Xin, M., Balakrishnan, S. N., Stansbery, D. T.: Spacecraft position and attitude control with $\theta-D$ technique..In: Proc. 42th AAIA Aerospace Sciences Meeting and Exhibit, Reno 2004. 10.2514/6.2004-540
Reference: [31] Xin, M., Pan, H.: Nonlinear optimal control of spacecraft approaching a tumbling target..Aerospace Sci. Technol. 15 (2011), 79-89. 10.1016/j.ast.2010.05.009
Reference: [32] Utkin, V. I.: Sliding Modes in Control and Optimization..Springer-Verlag, Berlin 1992. Zbl 0748.93044, MR 1295845
Reference: [33] Wertz, J. R.: Spacecraft Attitude Determination and Control..Kluwer Academic, Dordrecht, London 1978.
.

Files

Files Size Format View
Kybernetika_54-2018-5_11.pdf 3.424Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo