Previous |  Up |  Next

Article

Title: Dynamics and patterns of an activator-inhibitor model with cubic polynomial source (English)
Author: Li, Yanqiu
Author: Jiang, Juncheng
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 1
Year: 2019
Pages: 61-73
Summary lang: English
.
Category: math
.
Summary: The dynamics of an activator-inhibitor model with general cubic polynomial source is investigated. Without diffusion, we consider the existence, stability and bifurcations of equilibria by both eigenvalue analysis and numerical methods. For the reaction-diffusion system, a Lyapunov functional is proposed to declare the global stability of constant steady states, moreover, the condition related to the activator source leading to Turing instability is obtained in the paper. In addition, taking the production rate of the activator as the bifurcation parameter, we show the decisive effect of each part in the source term on the patterns and the evolutionary process among stripes, spots and mazes. Finally, it is illustrated that weakly linear coupling in the activator-inhibitor model can cause synchronous and anti-phase patterns. (English)
Keyword: activator-inhibitor model
Keyword: cubic polynomial source
Keyword: Turing pattern
Keyword: global stability
Keyword: weakly linear coupling
MSC: 35B32
MSC: 35B35
MSC: 35B40
MSC: 35K51
MSC: 35Q92
MSC: 92C15
idZBL: Zbl 07031677
idMR: MR3913884
DOI: 10.21136/AM.2019.0142-18
.
Date available: 2019-02-08T10:02:41Z
Last updated: 2021-03-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147595
.
Reference: [1] Abid, W., Yafia, R., Alaoui, M. A. Aziz, Bouhafa, H., Abichou, A.: Instability and pattern formation in three-species food chain model via Holling type II functional response on a circular domain.Int. J. Bifurcation Chaos Appl. Sci. Eng. 25 (2015), Article ID 1550092, 25 pages. Zbl 1317.92059, MR 3357413, 10.1142/S0218127415500923
Reference: [2] Antwi-Fordjour, K., Nkashama, M.: Global existence of solutions of the Gierer-Meinhardt system with mixed boundary conditions.Appl. Math., Irvine 8 (2017), 857-867. MR 3286973, 10.4236/am.2017.86067
Reference: [3] Bendahmane, M., Ruiz-Baier, R., Tian, C.: Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model.J. Math. Biol. 72 (2016), 1441-1465. Zbl 1338.35041, MR 3483181, 10.1007/s00285-015-0917-9
Reference: [4] Bray, D., Thomas, C.: Unpolymerized actin in fibroblasts and brain.J. Mol. Biol. 105 (1976), 527-544. 10.1016/0022-2836(76)90233-3
Reference: [5] Brayton, R. K., Moser, J. K.: Theory of nonlinear networks. I.Q. Appl. Math. 22 (1964), 1-33. Zbl 0242.94021, MR 0169746, 10.1090/qam/169746
Reference: [6] Feng, P.: Dynamics and pattern formation in a modified Leslie-Gower model with Allee effect and Bazykin functional response.Int. J. Biomath. 10 (2017), Article ID 1750073, 26 pages. Zbl 1369.35098, MR 3648133, 10.1142/S1793524517500735
Reference: [7] Freitas, P., Rocha, C.: Lyapunov functionals and stability for FitzHugh-Nagumo systems.J. Differ. Equations 169 (2001), 208-227. Zbl 0974.35051, MR 1808465, 10.1006/jdeq.2000.3901
Reference: [8] Gierrer, A., Meinhardt, H.: A theory of biological pattern formation.Biol. Cybern. 12 (1972), 30-39. 10.1007/bf00289234
Reference: [9] Henine, S., Youkana, A.: Large-time behaviour and blow up of solutions for Gierer-Meinhardt systems.Math. Methods Appl. Sci. 39 (2016), 570-582. Zbl 1333.35108, MR 3454195, 10.1002/mma.3502
Reference: [10] Justh, E. W., Krishnaprasad, P. S.: Pattern-forming systems for control of large arrays of actuators.J. Nonlinear Sci. 11 (2001), 239-277. Zbl 1007.93060, MR 1867072, 10.1007/s00332-001-0392-x
Reference: [11] Justh, E. W., Krishnaprasad, P. S.: A Lyapunov functional for the cubic nonlinearity activator-inhibitor model equation.Proceedings of the 37th IEEE Conference on Decision and Control, 1998 IEEE Control Systems Society, Piscataway (2002), 1404-1409. 10.1109/cdc.1998.758483
Reference: [12] Koch, A. J., Meinhardt, H.: Biological pattern formation: from basic mechanisms to complex structures.Rev. Mod. Phys. 66 (1994), 1481-1507. 10.1103/revmodphys.66.1481
Reference: [13] Schnakenberg, J.: Simple chemical reaction systems with limit cycle behaviour.J. Theoret. Biol. 81 (1979), 389-400. MR 0558661, 10.1016/0022-5193(79)90042-0
Reference: [14] Sun, G.-Q., Wang, C.-H., Wu, Z.-Y.: Pattern dynamics of a Gierer-Meinhardt model with spatial effects.Nonlinear Dyn. 88 (2017), 1385-1396. 10.1007/s11071-016-3317-9
Reference: [15] Turing, A. M.: The chemical basis of morphogenesis.Philos. Trans. R. Soc. Lond, Ser. B, Biol. Sci. 237 (1952), 37-72. Zbl 06853054, MR 3363444, 10.1098/rstb.1952.0012
Reference: [16] Wang, J., Hou, X., Jing, Z.: Stripe and spot patterns in a Gierer-Meinhardt activator-inhibitor model with different sources.Int. J. Bifurcation Chaos Appl. Sci. Eng. 25 (2015), Article ID 1550108, 16 pages. Zbl 1321.35006, MR 3376214, 10.1142/S02181274155010841550108
Reference: [17] Wei, J., Winter, M.: Existence of spikes for the Gierer-Meinhardt system in one dimension.Mathematical Aspects of Pattern Formation in Biological Systems Applied Mathematical Sciences 189, Springer, London (2014), 13-39. 10.1007/978-1-4471-5526-3_2
Reference: [18] Wei, J., Winter, M., Yang, W.: Stable spike clusters for the precursor Gierer-Meinhardt system in $\mathbb R^2$.Calc. Var. Partial Differ. Equ. 56 (2017), 40 pages. Zbl 1386.35166, MR 3704777, 10.1007/s00526-017-1233-6
Reference: [19] Wu, R., Shao, Y., Zhou, Y., Chen, L.: Turing and Hopf bifurcation of Gierer-Meinhardt activator-substrate model.Electron. J. Differ. Equ. 2017 (2017), Paper No. 173, 19 pages. Zbl 1370.35050, MR 3690200
Reference: [20] Yang, R., Song, Y.: Spatial resonance and Turing-Hopf bifurcations in the Gierer-Meinhardt model.Nonlinear Anal., Real World Appl. 31 (2016), 356-387. Zbl 1344.37061, MR 3490848, 10.1016/j.nonrwa.2016.02.006
Reference: [21] Yi, F., Gaffney, E. A., Seirin-Lee, S.: The bifurcation analysis of Turing pattern formation induced by delay and diffusion in the Schnakenberg system.Discrete Contin. Dyn. Syst., Ser. B 22 (2017), 647-668. Zbl 1360.35016, MR 3639134, 10.3934/dcdsb.2017031
Reference: [22] Zhou, J.: Bifurcation analysis of a diffusive predator-prey model with ratio-dependent Holling type III functional response.Nonlinear Dyn. 81 (2015), 1535-1552. Zbl 1348.92139, MR 3367172, 10.1007/s11071-015-2088-z
.

Files

Files Size Format View
AplMat_64-2019-1_4.pdf 1.201Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo