Previous |  Up |  Next

Article

Title: A remark on weak McShane integral (English)
Author: Yoshitomi, Kazushi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 1
Year: 2019
Pages: 45-53
Summary lang: English
.
Category: math
.
Summary: We characterize the weak McShane integrability of a vector-valued function on a finite Radon measure space by means of only finite McShane partitions. We also obtain a similar characterization for the Fremlin generalized McShane integral. (English)
Keyword: weak McShane integral
Keyword: finite McShane partition
Keyword: Radon measure space
MSC: 28B05
idZBL: Zbl 07088768
idMR: MR3923573
DOI: 10.21136/CMJ.2018.0153-17
.
Date available: 2019-03-08T14:55:12Z
Last updated: 2021-04-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147616
.
Reference: [1] Bauer, H.: Measure and Integration Theory. De Gruyter Studies in Mathematics 26.Walter de Gruyter, Berlin (2001). Zbl 0985.28001, MR 1897176
Reference: [2] Faure, C.-A., Mawhin, J.: Integration over unbounded multidimensional intervals.J. Math. Anal. Appl. 205 (1997), 65-77. Zbl 0879.26047, MR 1426980, 10.1006/jmaa.1996.5172
Reference: [3] Fremlin, D. H.: Topological Riesz Spaces and Measure Theory.Cambridge University Press, London (1974). Zbl 0273.46035, MR 0454575
Reference: [4] Fremlin, D. H.: The generalized McShane integral.Ill. J. Math. 39 (1995), 39-67. Zbl 0810.28006, MR 1299648, 10.1215/ijm/1255986628
Reference: [5] Kelley, J. L., Srinivasan, T. P.: Measure and Integral Vol. 1. Graduate Texts in Mathematics 116.Springer, New York (1988). Zbl 0635.28001, MR 0918770, 10.1007/978-1-4612-4570-4
Reference: [6] Saadoune, M., Sayyad, R.: The weak McShane integral.Czech. Math. J. 64 (2014), 387-418. Zbl 1340.28016, MR 3277743, 10.1007/s10587-014-0108-7
Reference: [7] Schwabik, Š., Ye, G.: Topics in Banach Space Integration. Series in Real Analysis Vol. 10.World Scientific, Singapore (2005). Zbl 1088.28008, MR 2167754, 10.1142/9789812703286
Reference: [8] Talagrand, M.: Pettis integral and measure theory.Mem. Am. Math. Soc. 307 (1984),\99999MR99999 0756174 . Zbl 0582.46049, MR 0756174, 10.1090/memo/0307
.

Files

Files Size Format View
CzechMathJ_69-2019-1_5.pdf 278.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo