Previous |  Up |  Next

Article

Title: Gorenstein projective complexes with respect to cotorsion pairs (English)
Author: Zhao, Renyu
Author: Ma, Pengju
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 1
Year: 2019
Pages: 117-129
Summary lang: English
.
Category: math
.
Summary: Let $(\mathcal {A,B})$ be a complete and hereditary cotorsion pair in the category of left $R$-modules. In this paper, the so-called Gorenstein projective complexes with respect to the cotorsion pair $(\mathcal {A}, \mathcal {B})$ are introduced. We show that these complexes are just the complexes of Gorenstein projective modules with respect to the cotorsion pair $(\mathcal {A}, \mathcal {B})$. As an application, we prove that both the Gorenstein projective modules with respect to cotorsion pairs and the Gorenstein projective complexes with respect to cotorsion pairs possess stability. (English)
Keyword: cotorsion pair
Keyword: Gorenstein projective complex with respect to cotorsion pairs
Keyword: stability of Gorenstein categories
MSC: 18G25
MSC: 18G35
idZBL: Zbl 07088774
idMR: MR3923579
DOI: 10.21136/CMJ.2018.0194-17
.
Date available: 2019-03-08T14:57:58Z
Last updated: 2021-04-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147622
.
Reference: [1] Bouchiba, S.: Stability of Gorenstein classes of modules.Algebra Colloq. 20 (2013), 623-636. Zbl 1281.16010, MR 3116791, 10.1142/S100538671300059X
Reference: [2] Bouchiba, S., Khaloui, M.: Stability of Gorenstein flat modules.Glasg. Math. J. 54 (2012), 169-175. Zbl 1235.16009, MR 2862395, 10.1017/S0017089511000516
Reference: [3] Bravo, D., Gillespie, J.: Absolutely clean, level, and Gorenstein AC-injective complexes.Commun. Algebra 44 (2016), 2213-2233. Zbl 1346.18021, MR 3490674, 10.1080/00927872.2015.1044100
Reference: [4] Enochs, E. E., Rozas, J. R. García: Gorenstein injective and projective complexes.Commun. Algebra 26 (1998), 1657-1674. Zbl 0908.18007, MR 1622438, 10.1080/00927879808826229
Reference: [5] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules.Math. Z. 220 (1995), 611-633. Zbl 0845.16005, MR 1363858, 10.1007/BF02572634
Reference: [6] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). Zbl 0952.13001, MR 1753146, 10.1515/9783110803662
Reference: [7] Rozas, J. R. García: Covers and Envelopes in the Category of Complexes of Modules.Chapman & Hall/CRC Research Notes in Mathematics 407, Chapman & Hall/CRC, Boca Raton (1999). Zbl 0922.16001, MR 1693036
Reference: [8] Gillespie, J.: The flat model structure on Ch($R$).Trans. Am. Math. Soc. 356 (2004), 3369-3390. Zbl 1056.55011, MR 2052954, 10.1090/S0002-9947-04-03416-6
Reference: [9] Holm, H.: Gorenstein homological dimensions.J. Pure Appl. Algebra 189 (2004), 167-193. Zbl 1050.16003, MR 2038564, 10.1016/j.jpaa.2003.11.007
Reference: [10] Hu, J. S., Xu, A. M.: On stability of F-Gorenstein flat categories.Algebra Colloq. 23 (2016), 251-262. Zbl 1346.16006, MR 3475049, 10.1142/S1005386716000286
Reference: [11] Liang, L., Ding, N. Q., Yang, G.: Some remarks on projective generators and injective cogenerators.Acta Math. Sin., Engl. Ser. 30 (2014), 2063-2078. Zbl 1304.18032, MR 3285935, 10.1007/s10114-014-3227-z
Reference: [12] Sather-Wagstaff, S., Sharif, T., White, D.: Stability of Gorenstein categories.J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. Zbl 1140.18010, MR 2400403, 10.1112/jlms/jdm124
Reference: [13] Xu, A. M., Ding, N. Q.: On stability of Gorenstein categories.Commun. Algebra 42 (2013), 3793-3804. Zbl 1284.16006, MR 3169490, 10.1080/00927872.2012.677892
Reference: [14] Yang, G., Liu, Z. K.: Cotorsion pairs and model structure on Ch($R$).Proc. Edinb. Math. Soc., II. Ser. 54 (2011), 783-797. Zbl 1238.13023, MR 2837480, 10.1017/S0013091510000489
Reference: [15] Yang, G., K.Liu, Z.: Stability of Gorenstein flat categories.Glasg. Math. J. 54 (2012), 177-191. Zbl 1248.16007, MR 2862396, 10.1017/S0017089511000528
Reference: [16] Yang, X. Y., Chen, W. J.: Relative homological dimensions and Tate cohomology of complexes with respect to cotorsion pairs.Commun. Algebra 45 (2017), 2875-2888. Zbl 1372.18015, MR 3594565, 10.1080/00927872.2016.1233226
Reference: [17] Yang, X. Y., Ding, N. Q.: On a question of Gillespie.Forum Math. 27 (2015), 3205-3231. Zbl 1347.18003, MR 3420339, 10.1515/forum-2013-6014
Reference: [18] Yang, X. Y., Liu, Z. K.: Gorenstein projective, injective, and flat complexes.Commun. Algebra 39 (2011), 1705-1721. Zbl 1238.16002, MR 2821502, 10.1080/00927871003741497
.

Files

Files Size Format View
CzechMathJ_69-2019-1_11.pdf 307.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo