Previous |  Up |  Next

Article

Title: On minimal spectrum of multiplication lattice modules (English)
Author: Ballal, Sachin
Author: Kharat, Vilas
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 144
Issue: 1
Year: 2019
Pages: 85-97
Summary lang: English
.
Category: math
.
Summary: We study the minimal prime elements of multiplication lattice module $M$ over a $C$-lattice $L$. Moreover, we topologize the spectrum $\pi (M)$ of minimal prime elements of $M$ and study several properties of it. The compactness of $\pi (M)$ is characterized in several ways. Also, we investigate the interplay between the topological properties of $\pi (M)$ and algebraic properties of $M$. (English)
Keyword: prime element
Keyword: mimimal prime element
Keyword: Zariski topology
MSC: 06D10
MSC: 06E10
MSC: 06E99
MSC: 06F99
idZBL: Zbl 07088837
idMR: MR3934199
DOI: 10.21136/MB.2018.0094-17
.
Date available: 2019-03-21T12:32:22Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147640
.
Reference: [1] Alarcon, F., Anderson, D. D., Jayaram, C.: Some results on abstract commutative ideal theory.Period. Math. Hung. 30 (1995), 1-26. Zbl 0822.06015, MR 1318850, 10.1007/BF01876923
Reference: [2] Al-Khouja, E. A.: Maximal elements and prime elements in lattice modules.Damascus University Journal for Basic Sciences 19 (2003), 9-21.
Reference: [3] Ballal, S., Kharat, V.: Zariski topology on lattice modules.Asian-Eur. J. Math. 8 (2015), Article ID 1550066, 10 pages. Zbl 1342.06011, MR 3424141, 10.1142/S1793557115500667
Reference: [4] Calliap, F., Tekir, U.: Multiplication lattice modules.Iran. J. Sci. Technol., Trans. A, Sci. 35 (2011), 309-313. Zbl 1315.06017, MR 2958883, 10.22099/ijsts.2011.2156
Reference: [5] Culhan, D. S.: Associated Primes and Primal Decomposition in Modules and Lattice Modules, and Their Duals.Thesis (Ph.D.), University of California, Riverside (2005). MR 2707457
Reference: [6] Dilworth, R. P.: Abstract commutative ideal theory.Pac. J. Math. 12 (1962), 481-498. Zbl 0111.04104, MR 0143781, 10.2140/pjm.1962.12.481
Reference: [7] Keimel, K.: A unified theory of minimal prime ideals.Acta Math. Acad. Sci. Hung. 23 (1972), 51-69. Zbl 0265.06016, MR 0318037, 10.1007/BF01889903
Reference: [8] Manjarekar, C. S., Kandale, U. N.: Baer elements in lattice modules.Eur. J. Pure Appl. Math. 8 (2015), 332-342. Zbl 06698174, MR 3373893
Reference: [9] Pawar, Y. S., Thakare, N. K.: The space of minimal prime ideals in a 0-distributive semilattice.Period. Math. Hung. 13 (1982), 309-319. Zbl 0532.06004, MR 0698578, 10.1007/BF01849242
Reference: [10] Phadatare, N., Ballal, S., Kharat, V.: On the second spectrum of lattice modules.Discuss. Math. Gen. Algebra Appl. 37 (2017), 59-74. MR 3648183, 10.7151/dmgaa.1266
Reference: [11] Thakare, N. K., Manjarekar, C. S.: Abstract spectral theory: Multiplicative lattices in which every character is contained in a unique maximal character.Algebra and Its Applications. Int. Symp. Algebra and Its Applications, 1981, New Delhi, India Lect. Notes Pure Appl. Math. 91. Marcel Dekker Inc., New York (1984), 265-276 H. L. Manocha et al. Zbl 0551.06012, MR 0750867
Reference: [12] Thakare, N. K., Manjarekar, C. S., Maeda, S.: Abstract spectral theory. II: Minimal characters and minimal spectrums of multiplicative lattices.Acta Sci. Math. 52 (1988), 53-67. Zbl 0653.06002, MR 0957788
.

Files

Files Size Format View
MathBohem_144-2019-1_6.pdf 299.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo