Title:
|
On minimal spectrum of multiplication lattice modules (English) |
Author:
|
Ballal, Sachin |
Author:
|
Kharat, Vilas |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
144 |
Issue:
|
1 |
Year:
|
2019 |
Pages:
|
85-97 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study the minimal prime elements of multiplication lattice module $M$ over a $C$-lattice $L$. Moreover, we topologize the spectrum $\pi (M)$ of minimal prime elements of $M$ and study several properties of it. The compactness of $\pi (M)$ is characterized in several ways. Also, we investigate the interplay between the topological properties of $\pi (M)$ and algebraic properties of $M$. (English) |
Keyword:
|
prime element |
Keyword:
|
mimimal prime element |
Keyword:
|
Zariski topology |
MSC:
|
06D10 |
MSC:
|
06E10 |
MSC:
|
06E99 |
MSC:
|
06F99 |
idZBL:
|
Zbl 07088837 |
idMR:
|
MR3934199 |
DOI:
|
10.21136/MB.2018.0094-17 |
. |
Date available:
|
2019-03-21T12:32:22Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147640 |
. |
Reference:
|
[1] Alarcon, F., Anderson, D. D., Jayaram, C.: Some results on abstract commutative ideal theory.Period. Math. Hung. 30 (1995), 1-26. Zbl 0822.06015, MR 1318850, 10.1007/BF01876923 |
Reference:
|
[2] Al-Khouja, E. A.: Maximal elements and prime elements in lattice modules.Damascus University Journal for Basic Sciences 19 (2003), 9-21. |
Reference:
|
[3] Ballal, S., Kharat, V.: Zariski topology on lattice modules.Asian-Eur. J. Math. 8 (2015), Article ID 1550066, 10 pages. Zbl 1342.06011, MR 3424141, 10.1142/S1793557115500667 |
Reference:
|
[4] Calliap, F., Tekir, U.: Multiplication lattice modules.Iran. J. Sci. Technol., Trans. A, Sci. 35 (2011), 309-313. Zbl 1315.06017, MR 2958883, 10.22099/ijsts.2011.2156 |
Reference:
|
[5] Culhan, D. S.: Associated Primes and Primal Decomposition in Modules and Lattice Modules, and Their Duals.Thesis (Ph.D.), University of California, Riverside (2005). MR 2707457 |
Reference:
|
[6] Dilworth, R. P.: Abstract commutative ideal theory.Pac. J. Math. 12 (1962), 481-498. Zbl 0111.04104, MR 0143781, 10.2140/pjm.1962.12.481 |
Reference:
|
[7] Keimel, K.: A unified theory of minimal prime ideals.Acta Math. Acad. Sci. Hung. 23 (1972), 51-69. Zbl 0265.06016, MR 0318037, 10.1007/BF01889903 |
Reference:
|
[8] Manjarekar, C. S., Kandale, U. N.: Baer elements in lattice modules.Eur. J. Pure Appl. Math. 8 (2015), 332-342. Zbl 06698174, MR 3373893 |
Reference:
|
[9] Pawar, Y. S., Thakare, N. K.: The space of minimal prime ideals in a 0-distributive semilattice.Period. Math. Hung. 13 (1982), 309-319. Zbl 0532.06004, MR 0698578, 10.1007/BF01849242 |
Reference:
|
[10] Phadatare, N., Ballal, S., Kharat, V.: On the second spectrum of lattice modules.Discuss. Math. Gen. Algebra Appl. 37 (2017), 59-74. MR 3648183, 10.7151/dmgaa.1266 |
Reference:
|
[11] Thakare, N. K., Manjarekar, C. S.: Abstract spectral theory: Multiplicative lattices in which every character is contained in a unique maximal character.Algebra and Its Applications. Int. Symp. Algebra and Its Applications, 1981, New Delhi, India Lect. Notes Pure Appl. Math. 91. Marcel Dekker Inc., New York (1984), 265-276 H. L. Manocha et al. Zbl 0551.06012, MR 0750867 |
Reference:
|
[12] Thakare, N. K., Manjarekar, C. S., Maeda, S.: Abstract spectral theory. II: Minimal characters and minimal spectrums of multiplicative lattices.Acta Sci. Math. 52 (1988), 53-67. Zbl 0653.06002, MR 0957788 |
. |