Previous |  Up |  Next


prime element; mimimal prime element; Zariski topology
We study the minimal prime elements of multiplication lattice module $M$ over a $C$-lattice $L$. Moreover, we topologize the spectrum $\pi (M)$ of minimal prime elements of $M$ and study several properties of it. The compactness of $\pi (M)$ is characterized in several ways. Also, we investigate the interplay between the topological properties of $\pi (M)$ and algebraic properties of $M$.
[1] Alarcon, F., Anderson, D. D., Jayaram, C.: Some results on abstract commutative ideal theory. Period. Math. Hung. 30 (1995), 1-26. DOI 10.1007/BF01876923 | MR 1318850 | Zbl 0822.06015
[2] Al-Khouja, E. A.: Maximal elements and prime elements in lattice modules. Damascus University Journal for Basic Sciences 19 (2003), 9-21.
[3] Ballal, S., Kharat, V.: Zariski topology on lattice modules. Asian-Eur. J. Math. 8 (2015), Article ID 1550066, 10 pages. DOI 10.1142/S1793557115500667 | MR 3424141 | Zbl 1342.06011
[4] Calliap, F., Tekir, U.: Multiplication lattice modules. Iran. J. Sci. Technol., Trans. A, Sci. 35 (2011), 309-313. DOI 10.22099/ijsts.2011.2156 | MR 2958883 | Zbl 1315.06017
[5] Culhan, D. S.: Associated Primes and Primal Decomposition in Modules and Lattice Modules, and Their Duals. Thesis (Ph.D.), University of California, Riverside (2005). MR 2707457
[6] Dilworth, R. P.: Abstract commutative ideal theory. Pac. J. Math. 12 (1962), 481-498. DOI 10.2140/pjm.1962.12.481 | MR 0143781 | Zbl 0111.04104
[7] Keimel, K.: A unified theory of minimal prime ideals. Acta Math. Acad. Sci. Hung. 23 (1972), 51-69. DOI 10.1007/BF01889903 | MR 0318037 | Zbl 0265.06016
[8] Manjarekar, C. S., Kandale, U. N.: Baer elements in lattice modules. Eur. J. Pure Appl. Math. 8 (2015), 332-342. MR 3373893 | Zbl 06698174
[9] Pawar, Y. S., Thakare, N. K.: The space of minimal prime ideals in a 0-distributive semilattice. Period. Math. Hung. 13 (1982), 309-319. DOI 10.1007/BF01849242 | MR 0698578 | Zbl 0532.06004
[10] Phadatare, N., Ballal, S., Kharat, V.: On the second spectrum of lattice modules. Discuss. Math. Gen. Algebra Appl. 37 (2017), 59-74. DOI 10.7151/dmgaa.1266 | MR 3648183
[11] Thakare, N. K., Manjarekar, C. S.: Abstract spectral theory: Multiplicative lattices in which every character is contained in a unique maximal character. Algebra and Its Applications. Int. Symp. Algebra and Its Applications, 1981, New Delhi, India Lect. Notes Pure Appl. Math. 91. Marcel Dekker Inc., New York (1984), 265-276 H. L. Manocha et al. MR 0750867 | Zbl 0551.06012
[12] Thakare, N. K., Manjarekar, C. S., Maeda, S.: Abstract spectral theory. II: Minimal characters and minimal spectrums of multiplicative lattices. Acta Sci. Math. 52 (1988), 53-67. MR 0957788 | Zbl 0653.06002
Partner of
EuDML logo