Previous |  Up |  Next

Article

Keywords:
amenability; Connes-amenability; dual multiplier algebra; normal virtual operator diagonal
Summary:
For a completely contractive Banach algebra $B$, we find conditions under which the completely bounded multiplier algebra $\mathcal{M}_{cb}(B)$ is a dual Banach algebra and the operator amenability of $B$ is equivalent to the operator Connes-amenability of $\mathcal{M}_{cb}(B)$. We also show that, in this case, these are equivalent to the existence of a normal virtual operator diagonal.
References:
[1] Daws, M.: Connes-amenability of bidual and weighted semigroup algebras. Math. Scand. 99 (2006), 217–246. DOI 10.7146/math.scand.a-15010 | MR 2289023
[2] Daws, M.: Multipliers, self-induced and dual Banach algebras. Dissertationes Math. (Rozprawy Mat.) 470 (2010), 62 pp. MR 2681109
[3] Deutsch, E.: Matricial norms. Numer. Math. 19 (1) (1970), 73–84. DOI 10.1007/BF02162408 | MR 0277552
[4] Effros, E.G., Ruan, Z.-J.: Operator Spaces. Clarendon Press, 2000. MR 1793753
[5] Hayati, B., Amini, M.: Connes-amenability of multiplier Banach algebras. Kyoto J. Math. 50 (2010), 41–50. DOI 10.1215/0023608X-2009-003 | MR 2629641
[6] Hayati, B., Amini, M.: Dual multiplier Banach algebras and Connes-amenability. Publ. Math. Debrecen 86 (2015), 169–182. DOI 10.5486/PMD.2015.7043 | MR 3300584
[7] Helmeskii, A.Ya.: Homological essence of amenability in the sense of A. Connes: the injectivity of the predual bimodule. Math. USSR.-Sb. 68 (1991), 555–566. DOI 10.1070/SM1991v068n02ABEH001374
[8] Johnson, B.E.: An introduction to the theory of centralizers. Proc. London Math. Soc. 14 (1964), 299–320. DOI 10.1112/plms/s3-14.2.299 | MR 0159233
[9] Johnson, B.E.: Cohomology in Banach Algebras. Mem. Amer. Math. Soc. 127 (1972). MR 0374934 | Zbl 0256.18014
[10] Johnson, B.E.: Non-amenability of the Fourier algebra of a compact group. J. London Math. Soc. 50 (2) (1994), 361–374. DOI 10.1112/jlms/50.2.361 | MR 1291743
[11] Johnson, B.E., Kadison, R.V., Ringrose, J.R.: Cohomology of operator algebras III. Bull. Soc. Math. France 100 (1972), 73–96. DOI 10.24033/bsmf.1731 | MR 0318908
[12] Larsen, R.: An Introduction to the Theory of Mutipliers. Springer-Verlag, Berlin, 1971. MR 0435738
[13] Oshobi, E.O., Pym, J.S.: Banach algebras whose duals consist of multipliers. Math. Proc. Cambridge Philos. Soc. 102 (1987), 481–505. DOI 10.1017/S0305004100067542 | MR 0906623
[14] Ruan, Z.-J.: The operator amenability of $A(G)$. Amer. J. Math. 117 (1995), 1449–1474. DOI 10.2307/2375026 | MR 1363075
[15] Runde, V.: Amenability for dual Banach algebras. Studia Math. 148 (2001), 47–66. DOI 10.4064/sm148-1-5 | MR 1881439 | Zbl 1003.46028
[16] Runde, V.: Lectures on Amenability. Lecture Notes in Math., vol. 1774, Springer-Verlag, Berlin-Heidelberg-New York, 2002. MR 1874893 | Zbl 0999.46022
[17] Runde, V.: Connes-amenability and normal, virtual diagonals for measure algebras. I. J. London Math. Soc. 67 (2003), 643–656. DOI 10.1112/S0024610703004125 | MR 1967697
[18] Runde, V.: Connes-amenability and normal, virtual diagonals for measure algebras. II. Bull. Austral. Math. Soc. 68 (2003), 325–328. DOI 10.1017/S0004972700037709 | MR 2016307
[19] Runde, V.: Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule. Math. Scand. 95 (2004), 124–144. DOI 10.7146/math.scand.a-14452 | MR 2091485
[20] Runde, V., Spronk, N.: Operator amenability of Fourier-Stieltjes algebras. Math. Proc. Cambridge Philos. Soc. 136 (2004), 675–686. DOI 10.1017/S030500410300745X | MR 2055055
[21] Runde, V., Uygul, F.: Connes-amenability of Fourier-Stieltjes algebras. Bull. London Math. Soc. (2015). MR 3375923
[22] Spronk, N.: Measurable Schur multiplies and completely bounded multipliers of the Fourier algebras. Proc. London Math. Soc. 89 (2004), 161–192. MR 2063663
Partner of
EuDML logo