[2] Daws, M.:
Multipliers, self-induced and dual Banach algebras. Dissertationes Math. (Rozprawy Mat.) 470 (2010), 62 pp.
MR 2681109
[4] Effros, E.G., Ruan, Z.-J.:
Operator Spaces. Clarendon Press, 2000.
MR 1793753
[7] Helmeskii, A.Ya.:
Homological essence of amenability in the sense of A. Connes: the injectivity of the predual bimodule. Math. USSR.-Sb. 68 (1991), 555–566.
DOI 10.1070/SM1991v068n02ABEH001374
[11] Johnson, B.E., Kadison, R.V., Ringrose, J.R.:
Cohomology of operator algebras III. Bull. Soc. Math. France 100 (1972), 73–96.
DOI 10.24033/bsmf.1731 |
MR 0318908
[12] Larsen, R.:
An Introduction to the Theory of Mutipliers. Springer-Verlag, Berlin, 1971.
MR 0435738
[16] Runde, V.:
Lectures on Amenability. Lecture Notes in Math., vol. 1774, Springer-Verlag, Berlin-Heidelberg-New York, 2002.
MR 1874893 |
Zbl 0999.46022
[19] Runde, V.:
Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule. Math. Scand. 95 (2004), 124–144.
DOI 10.7146/math.scand.a-14452 |
MR 2091485
[21] Runde, V., Uygul, F.:
Connes-amenability of Fourier-Stieltjes algebras. Bull. London Math. Soc. (2015).
MR 3375923
[22] Spronk, N.:
Measurable Schur multiplies and completely bounded multipliers of the Fourier algebras. Proc. London Math. Soc. 89 (2004), 161–192.
MR 2063663