Previous |  Up |  Next

Article

Title: Some remarks on the Navier-Stokes equations with regularity in one direction (English)
Author: Zhang, Zujin
Author: Yuan, Weijun
Author: Zhou, Yong
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 3
Year: 2019
Pages: 301-308
Summary lang: English
.
Category: math
.
Summary: We review the developments of the regularity criteria for the Navier-Stokes equations, and make some further improvements. (English)
Keyword: regularity criteria
Keyword: Navier-Stokes equations
MSC: 35B65
MSC: 35Q30
MSC: 76D03
idZBL: Zbl 07088742
idMR: MR3956174
DOI: 10.21136/AM.2019.0264-18
.
Date available: 2019-05-24T08:50:54Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147719
.
Reference: [1] Veiga, H. Beirão da: A new regularity class for the Navier-Stokes equations in $\mathbb R^n$.Chin. Ann. Math., Ser. B 16 (1995), 407-412. Zbl 0837.35111, MR 1380578
Reference: [2] Cao, C.: Sufficient conditions for the regularity to the 3D Navier-Stokes equations.Discrete Contin. Dyn. Syst. 26 (2010), 1141-1151. Zbl 1186.35136, MR 2600739, 10.3934/dcds.2010.26.1141
Reference: [3] Cao, C., Titi, E. S.: Regularity criteria for the three-dimensional Navier-Stokes equations.Indiana Univ. Math. J. 57 (2008), 2643-2661. Zbl 1159.35053, MR 2482994, 10.1512/iumj.2008.57.3719
Reference: [4] Chemin, J.-Y., Zhang, P.: On the critical one component regularity for 3-D Navier-Stokes systems.Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), 131-167. Zbl 1342.35210, MR 3465978, 10.24033/asens.2278
Reference: [5] Chemin, J.-Y., Zhang, P., Zhang, Z.: On the critical one component regularity for 3-D Navier-Stokes system: general case.Arch. Ration. Mech. Anal. 224 (2017), 871-905. Zbl 1371.35193, MR 3621812, 10.1007/s00205-017-1089-0
Reference: [6] Escauriaza, L., Serëgin, G. A., Šverák, V.: $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness.Russ. Math. Surv. 58 (2003), 211-250 translation from Usp. Mat. Nauk 58 2003 3-44. Zbl 1064.35134, MR 1992563, 10.1070/RM2003v058n02ABEH000609
Reference: [7] Guo, Z., Caggio, M., Skalák, Z.: Regularity criteria for the Navier-Stokes equations based on one component of velocity.Nonlinear Anal., Real World Appl. 35 (2017), 379-396. Zbl 1360.35146, MR 3595332, 10.1016/j.nonrwa.2016.11.005
Reference: [8] Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen.Math. Nachr. 4 German (1951), 213-231. Zbl 0042.10604, MR 0050423, 10.1002/mana.3210040121
Reference: [9] Jia, X., Zhou, Y.: Remarks on regularity criteria for the Navier-Stokes equations via one velocity component.Nonlinear Anal., Real World Appl. 15 (2014), 239-245. Zbl 1297.35168, MR 3110568, 10.1016/j.nonrwa.2013.08.002
Reference: [10] Kukavica, I., Ziane, M.: One component regularity for the Navier-Stokes equations.Nonlinearity 19 (2006), 453-469. Zbl 1149.35069, MR 2199398, 10.1088/0951-7715/19/2/012
Reference: [11] Kukavica, I., Ziane, M.: Navier-Stokes equations with regularity in one direction.J. Math. Phys. 48 (2007), Article ID 065203, 10 pages. Zbl 1144.81373, MR 2337002, 10.1063/1.2395919
Reference: [12] Leray, J.: Sur le mouvement d'un liquide visqueux emplissant l'espace.Acta Math. 63 (1934), 193-248 French \99999JFM99999 60.0726.05. MR 1555394, 10.1007/BF02547354
Reference: [13] Neustupa, J., Novotný, A., Penel, P.: An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity.Topics in Mathematical Fluid Mechanics Quad. Mat. 10, Aracne, Rome (2002), 163-183. Zbl 1050.35073, MR 2051774
Reference: [14] Penel, P., Pokorný, M.: Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity.Appl. Math., Praha 49 (2004), 483-493. Zbl 1099.35101, MR 2086090, 10.1023/B:APOM.0000048124.64244.7e
Reference: [15] Penel, P., Pokorný, M.: On anisotropic regularity criteria for the solutions to 3D Navier-Stokes equations.J. Math. Fluid Mech. 13 (2011), 341-353. Zbl 1270.35354, MR 2824487, 10.1007/s00021-010-0038-6
Reference: [16] Pokorný, M.: On the result of He concerning the smoothness of solutions to the Navier-Stokes equations.Electron. J. Differ. Equ. 2003 (2003), Article No. 11, 8 pages. Zbl 1014.35073, MR 1958046
Reference: [17] Prodi, G.: Un teorema di unicità per le equazioni di Navier-Stokes.Ann. Mat. Pura Appl. (4) 48 (1959), 173-182 Italian. Zbl 0148.08202, MR 0126088, 10.1007/BF02410664
Reference: [18] Robinson, J. C., Rodrigo, J. L., Sadowski, W.: The Three-Dimensional Navier-Stokes Equations. Classical Theory.Cambridge Studies in Advanced Mathematics 157, Cambridge University Press, Cambridge (2016). Zbl 1358.35002, MR 3616490, 10.1017/CBO9781139095143
Reference: [19] Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations.Arch. Ration. Mech. Anal. 9 (1962), 187-195. Zbl 0106.18302, MR 0136885, 10.1007/BF00253344
Reference: [20] Skalák, Z.: On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 104 (2014), 84-89. Zbl 1291.35192, MR 3196890, 10.1016/j.na.2014.03.018
Reference: [21] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis.AMS Chelsea Publishing, Providence (2001). Zbl 0981.35001, MR 1846644, 10.1090/chel/343
Reference: [22] Zhang, Z.: An almost Serrin-type regularity criterion for the Navier-Stokes equations involving the gradient of one velocity component.Z. Angew. Math. Phys. 66 (2015), 1707-1715. Zbl 1325.35147, MR 3377710, 10.1007/s00033-015-0500-7
Reference: [23] Zhang, Z.: An improved regularity criterion for the Navier-Stokes equations in terms of one directional derivative of the velocity field.Bull. Math. Sci. 8 (2018), 33-47. Zbl 1393.35152, MR 3775266, 10.1007/s13373-016-0098-x
Reference: [24] Zhou, Y.: A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component.Methods Appl. Anal. 9 (2002), 563-578. Zbl 1166.35359, MR 2006605, 10.4310/MAA.2002.v9.n4.a5
Reference: [25] Zhou, Y.: A new regularity criterion for weak solutions to the Navier-Stokes equations.J. Math. Pures Appl. (9) 84 (2005), 1496-1514. Zbl 1092.35081, MR 2181458, 10.1016/j.matpur.2005.07.003
Reference: [26] Zhou, Y., Pokorný, M.: On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component.J. Math. Phys. 50 (2009), Article ID 123514, 11 pages. Zbl 1373.35226, MR 2582610, 10.1063/1.3268589
Reference: [27] Zhou, Y., Pokorný, M.: On the regularity of the solutions of the Navier-Stokes equations via one velocity component.Nonlinearity 23 (2010), 1097-1107. Zbl 1190.35179, MR 2630092, 10.1088/0951-7715/23/5/004
.

Files

Files Size Format View
AplMat_64-2019-3_3.pdf 265.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo