Previous |  Up |  Next

Article

Title: Theoretical foundation of the weighted Laplace inpainting problem (English)
Author: Hoeltgen, Laurent
Author: Kleefeld, Andreas
Author: Harris, Isaac
Author: Breuss, Michael
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 3
Year: 2019
Pages: 281-300
Summary lang: English
.
Category: math
.
Summary: Laplace interpolation is a popular approach in image inpainting using partial differential equations. The classic approach considers the Laplace equation with mixed boundary conditions. Recently a more general formulation has been proposed, where the differential operator consists of a point-wise convex combination of the Laplacian and the known image data. We provide the first detailed analysis on existence and uniqueness of solutions for the arising mixed boundary value problem. Our approach considers the corresponding weak formulation and aims at using the Theorem of Lax-Milgram to assert the existence of a solution. To this end we have to resort to weighted Sobolev spaces. Our analysis shows that solutions do not exist unconditionally. The weights need some regularity and must fulfil certain growth conditions. The results from this work complement findings which were previously only available for a discrete setup. (English)
Keyword: image inpainting
Keyword: image reconstruction
Keyword: Laplace equation
Keyword: Laplace interpolation
Keyword: mixed boundary condition
Keyword: partial differential equation
Keyword: weighted Sobolev space
MSC: 35J15
MSC: 35J70
MSC: 46E35
MSC: 94A08
idZBL: Zbl 07088741
idMR: MR3956173
DOI: 10.21136/AM.2019.0206-18
.
Date available: 2019-05-24T08:50:28Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147718
.
Reference: [1] Atkinson, K., Han, W.: Theoretical Numerical Analysis. A Functional Analysis Framework.Texts in Applied Mathematics 39, Springer, Berlin (2009). Zbl 1181.47078, MR 2511061, 10.1007/978-1-4419-0458-4
Reference: [2] Azzam, A., Kreyszig, E.: On solutions of elliptic equations satisfying mixed boundary conditions.SIAM J. Math.Anal. 13 (1982), 254-262. Zbl 0485.35041, MR 0647124, 10.1137/0513018
Reference: [3] Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation data in images.SIAM J. Appl. Math. 70 (2009), 333-352. Zbl 1190.94006, MR 2521220, 10.1137/080716396
Reference: [4] Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting.Proc. 27th Annual Conf. Computer Graphics and Interactive Techniques ACM Press/Addison-Wesley Publishing Company, New York 417-424 (2000). 10.1145/344779.344972
Reference: [5] Bloor, M. I. G., Wilson, M. J.: Generating blend surfaces using partial differential equations.Comput.-Aided Des. 21 (1989), 165-171. Zbl 0669.65006, 10.1016/0010-4485(89)90071-7
Reference: [6] Bredies, K.: A variational weak weighted derivative: Sobolev spaces and degenerate elliptic equations.Available at https://imsc.uni-graz.at/bredies/publications_de.html (2008).
Reference: [7] Brown, R.: The mixed problem for Laplace's equation in a class of Lipschitz domains.Commun. Partial Differ. Equations 19 (1994), 1217-1233. Zbl 0831.35043, MR 1284808, 10.1080/03605309408821052
Reference: [8] Cantrell, R. S., Cosner, C.: Spatial Ecology via Reaction-Diffusion Equations.Wiley Series in Mathematical and Computational Biology, Wiley, Chichester (2003). Zbl 1059.92051, MR 2191264, 10.1002/0470871296
Reference: [9] Caselles, V., Morel, J.-M., Sbert, C.: An axiomatic approach to image interpolation.IEEE Trans. Image Process. 7 (1998), 376-386. Zbl 0993.94504, MR 1669524, 10.1109/83.661188
Reference: [10] Chabrowski, J.: The Dirichlet Problem with $L^2$ Boundary Data for Elliptic Linear Equations.Lecture Notes in Mathematics 1482, Springer, Berlin (1991). Zbl 0734.35024, MR 1165533, 10.1007/BFb0095750
Reference: [11] Chan, T. F., Kang, S. H.: Error analysis for image inpainting.J. Math. Imaging Vis. 26 (2006), 85-103. MR 2283872, 10.1007/s10851-006-6865-7
Reference: [12] Chan, T. F., Shen, J.: Mathematical models for local non-texture inpaintings.SIAM J. Appl. Math. 62 (2002), 1019-1043. Zbl 1050.68157, MR 1897733, 10.1137/S0036139900368844
Reference: [13] Crain, I. K.: Computer interpolation and contouring of two-dimensional data: A review.Geoexploration 8 (1970), 71-86. 10.1016/0016-7142(70)90021-9
Reference: [14] Maso, G. Dal, Mosco, U.: Wiener's criterion and $\Gamma$-convergence.Appl. Math. Optimization 15 (1987), 15-63. Zbl 0644.35033, MR 0866165, 10.1007/BF01442645
Reference: [15] Edmunds, D. E., Opic, B.: Weighted Poincaré and Friedrichs inequalities.J. Lon. Math. Soc., II. Ser. 47 (1993), 79-96. Zbl 0797.46027, MR 1200980, 10.1112/jlms/s2-47.1.79
Reference: [16] Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements.Applied Mathematical Sciences 159, Springer, New York (2004). Zbl 1059.65103, MR 2050138, 10.1007/978-1-4757-4355-5
Reference: [17] Fichera, G.: Analisi esistenziale per le soluzioni dei problemi al contorno misti, relativi all'equazione e ai sistemi di equazioni del secondo ordine di tipo ellittico, autoaggiunti.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 1 (1949), Italian 75-100. Zbl 0035.18603, MR 0035370
Reference: [18] Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.-P.: Towards PDE-based image compression.N. Paragios et al. Variational, Geometric, and Level Set Methods in Computer Vision Lecture Notes in Computer Science 3752, Springer, Berlin (2005), 37-48. Zbl 1159.68589, MR 2232529, 10.1007/11567646
Reference: [19] Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.-P.: Image compression with anisotropic diffusion.J. Math. Imaging Vis. 31 (2008), 255-269. MR 2407524, 10.1007/s10851-008-0087-0
Reference: [20] Gol'dshtein, V., Ukhlov, A.: Weighted Sobolev spaces and embedding theorems.Trans. Am. Math. Soc. 361 (2009), 3829-3850. Zbl 1180.46022, MR 2491902, 10.1090/S0002-9947-09-04615-7
Reference: [21] Guillemot, C., Meur, O. Le: Image inpainting: Overview and recent advances.IEEE Signal Processing Magazine 31 (2014), 127-144. 10.1109/msp.2013.2273004
Reference: [22] Hoeltgen, L.: Optimal interpolation data for image reconstructions.Ph.D. Thesis, Saarland University, Saarbrücken (2014).
Reference: [23] Hoeltgen, L.: Understanding image inpainting with the help of the Helmholtz equation.Math. Sci., Springer 11 (2017), 73-77. Zbl 06781216, MR 3612257, 10.1007/s40096-017-0207-3
Reference: [24] Hoeltgen, L., Harris, I., Breuß, M., Kleefeld, A.: Analytic existence and uniqueness results for PDE-based image reconstruction with the Laplacian.International Conference on Scale Space and Variational Methods in Computer Vision F. Lauze et al. Lecture Notes in Computer Science 10302, Springer, Cham (2017), 66-79. MR 3864739, 10.1007/978-3-319-58771-4_6
Reference: [25] L. Hoeltgen, M. Mainberger, S. Hoffmann, J. Weickert, C. H. Tang, S. Setzer, D. Johannsen, F. Neumann, B. Doerr: Optimizing spatial and tonal data for PDE-based inpainting.Variational Methods, In Imaging and Geometric Control M. Bergounioux et al. Radon Series on Computational and Applied Mathematics 18, De Gruyter, Berlin (2017), 35-83. Zbl 06984290, MR 3618249, 10.1515/9783110430394
Reference: [26] Hoeltgen, L., Setzer, S., Weickert, J.: An optimal control approach to find sparse data for Laplace interpolation.Energy Minimization Methods in Computer Vision and Pattern Recognition A. Heyden et al. Lecture Notes in Computer Science 8081, Springer, Berlin (2013), 151-164. 10.1007/978-3-642-40395-8_12
Reference: [27] Hoeltgen, L., Weickert, J.: Why does non-binary mask optimisation work for diffusion-based image compression?.X.-C. Tai et al. Energy Minimization Methods in Computer Vision and Pattern Recognition Lecture Notes in Computer Science 8932, Springer, Cham (2015), 85-98. 10.1007/978-3-319-14612-6_7
Reference: [28] Kufner, A.: Weighted Sobolev Spaces.Teubner-Texte zur Mathematik 31, BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1980). Zbl 0455.46034, MR 0664599
Reference: [29] Kufner, A., Opic, B.: The Dirichlet problem and weighted spaces. I.Čas. Pěst. Mat. 108 (1983), 381-408. Zbl 0589.35016, MR 0727537
Reference: [30] Kufner, A., Opic, B.: How to define reasonably weighted Sobolev spaces.Commentat. Math. Univ. Carol. 25 (1984), 537-554. Zbl 0557.46025, MR 0775568
Reference: [31] Kufner, A., Opic, B.: Some remarks on the definition of weighted Sobolev spaces.Partial Differential Equations, 1983 ``Nauka'' Sibirsk. Otdel, Novosibirsk (1986), 119-126 Russian. MR 0851604
Reference: [32] Kufner, A., Opic, B.: The Dirichlet problem and weighted spaces. II.Čas. Pěstování Mat. 111 (1986), 242-253. Zbl 0654.35039, MR 0853789
Reference: [33] Kufner, A., Sändig, A.-M.: Some Applications of Weighted Sobolev Spaces.Teubner-Texte zur Mathematik 100, BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1987). Zbl 0662.46034, MR 0926688, 10.1007/978-3-663-11385-0
Reference: [34] Mainberger, M., Bruhn, A., Weickert, J., Forchhammer, S.: Edge-based compression of \hbox{cartoon}-like images with homogeneous diffusion.Pattern Recognition 44 (2011), 1859-1873. 10.1016/j.patcog.2010.08.004
Reference: [35] Mainberger, M., Hoffmann, S., Weickert, J., Tang, C. H., Johannsen, D., Neumann, F., Doerr, B.: Optimising spatial and tonal data for homogeneous diffusion inpainting.Scale Space and Variational Methods in Computer Vision A. M. Bruckstein et al. Lecture Notes in Computer Science 6667, Springer, Berlin (2012), 26-37. MR 3207755, 10.1007/978-3-642-24785-9_3
Reference: [36] Martinet, B.: Régularisation d'inéquations variationnelles par approximations successives.Rev. Franç. Inform. Rech. Opér. 4 (1970), 154-158 French. Zbl 0215.21103, MR 0298899
Reference: [37] Masnou, S., Morel, J.-M.: Level lines based disocclusion.Proceedings 1998 International Conference on Image Processing. ICIP98 IEEE (2002), 259-263. MR 1888912, 10.1109/icip.1998.999016
Reference: [38] Miranda, C.: Sul problema misto per le equazioni lineari ellittiche.Ann. Mat. Pura Appl., IV. Ser. 39 (1955), 279-303 Italian. Zbl 0066.34301, MR 0078561, 10.1007/BF02410775
Reference: [39] Nochetto, R. H., Otárola, E., Salgado, A. J.: Piecewise polynomial interpolation in Muckenhoupt weighted Sobolev spaces and applications.Numer. Math. 132 (2016), 85-130. Zbl 1334.65030, MR 3439216, 10.1007/s00211-015-0709-6
Reference: [40] Noma, A. A., Misulia, M. G.: Programming topographic maps for automatic terrain model construction.Surveying and Mapping 19 (1959), 355-366.
Reference: [41] Oleĭnik, O. A., Radkevič, E. V.: Second-Order Equations with Nonnegative Characteristic Form.American Mathematical Society, Providence (1973). Zbl 0217.41502, MR 0457908, 10.1007/978-1-4684-8965-1
Reference: [42] Opic, B., Kufner, A.: Hardy-type Inequalities.Pitman Research Notes in Mathematics 219, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York (1990). Zbl 0698.26007, MR 1069756
Reference: [43] Peter, P., Hoffmann, S., Nedwed, F., Hoeltgen, L., Weickert, J.: Evaluating the true potential of diffusion-based inpainting in a compression context.Signal Processing: Image Communication 46 (2016), 40-53. 10.1016/j.image.2016.05.002
Reference: [44] Peter, P., Hoffmann, S., Nedwed, F., Hoeltgen, L., Weickert, J.: From optimised inpainting with linear PDEs towards competitive image compression codecs.Image and Video Technology T. Bräunl et al. Lecture Notes in Computer Science 9431, Springer, Cham (2016), 63-74. 10.1007/978-3-319-29451-3_6
Reference: [45] Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P.: Numerical Recipes in C tt{++}. The Art of Scientific Computing.Cambridge University Press, Cambridge (2002). Zbl 1078.65500, MR 1880993
Reference: [46] Sawyer, E. T., Wheeden, R. L.: Degenerate Sobolev spaces and regularity of subelliptic equations.Trans. Am. Math. Soc. 362 (2010), 1869-1906. Zbl 1191.35085, MR 2574880, 10.1090/S0002-9947-09-04756-4
Reference: [47] Schmaltz, C., Weickert, J., Bruhn, A.: Beating the quality of JPEG 2000 with anisotropic diffusion.Pattern Recognition J. Denzler et al. Lecture Notes in Computer Science 5748, Springer, Berlin (2009), 452-461. 10.1007/978-3-642-03798-6_46
Reference: [48] Schönlieb, C.-B.: Partial Differential Equation Methods for Image Inpainting.Cambridge Monographs on Applied and Computational Mathematics 29, Cambridge University Press, Cambridge (2015). Zbl 1335.94002, MR 3558995, 10.1017/CBO9780511734304
Reference: [49] Solomon, C., Breckon, T.: Fundamentals of Digital Image Processing. A Practical Approach with Examples in Matlab.Wiley-Blackwell, Chichester (2014). 10.1002/9780470689776
Reference: [50] Turesson, B. O.: Nonlinear Potential Theory and Weighted Sobolev Spaces.Lecture Notes in Mathematics 1736, Springer, Berlin (2000). Zbl 0949.31006, MR 1774162, 10.1007/BFb0103908
Reference: [51] Višik, M. I., Grušin, V. V.: Boundary value problems for elliptic equations degenerate on the boundary of a domain.Math. USSR, Sb. 9 (1969), 423-454. 10.1070/sm1969v009n04abeh002055
Reference: [52] Wang, W., Sun, J., Zheng, Z.: Poincaré inequalities in weighted Sobolev spaces.Appl. Math. Mech., Engl. Ed. 27 (2006), 125-132. Zbl 1160.46315, MR 2213423, 10.1007/s10483-006-0116-1
Reference: [53] Weber, A.: The USC-SIPI image database, 2014. Available at http://sipi.usc.edu/database/.https://swmath.org/software/15845.
Reference: [54] Zaremba, S.: Sur un problème mixte relatif à l'équation de Laplace.Bulletin international de l'Académie des sciences de Cracovie (1910), 313-344 French. Zbl 41.0854.12
.

Files

Files Size Format View
AplMat_64-2019-3_2.pdf 562.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo