Previous |  Up |  Next

Article

Title: An approximation formula for the price of credit default swaps under the fast-mean reversion volatility model (English)
Author: He, Xin-Jiang
Author: Chen, Wenting
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 3
Year: 2019
Pages: 367-382
Summary lang: English
.
Category: math
.
Summary: We consider the pricing of credit default swaps (CDSs) with the reference asset assumed to follow a geometric Brownian motion with a fast mean-reverting stochastic volatility, which is often observed in the financial market. To establish the pricing mechanics of the CDS, we set up a default model, under which the fair price of the CDS containing the unknown ``no default'' probability is derived first. It is shown that the ``no default'' probability is equivalent to the price of a down-and-out binary option written on the same reference asset. Based on the perturbation approach, we obtain an approximated but closed-form pricing formula for the spread of the CDS. It is also shown that the accuracy of our solution is in the order of $\mathscr O(\epsilon )$. (English)
Keyword: credit default swaps
Keyword: fast mean-reverting volatility
Keyword: perturbation method
MSC: 91G20
MSC: 91G80
idZBL: Zbl 07088746
idMR: MR3956178
DOI: 10.21136/AM.2019.0313-17
.
Date available: 2019-05-24T08:53:28Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147723
.
Reference: [1] Beckers, S.: Variances of security price returns based on high, low, and closing prices.J. Business 56 (1983), 97-112. MR 2695462, 10.1086/296188
Reference: [2] Brigo, D., Chourdakis, K.: Counterparty risk for credit default swaps: impact of spread volatility and default correlation.Int. J. Theor. Appl. Finance 12 (2009), 1007-1026. Zbl 1187.91206, MR 2574492, 10.1142/S0219024909005567
Reference: [3] Cariboni, J., Schoutens, W.: Pricing credit default swaps under Lévy models.J. Comput. Finance 10 (2007), 71-91. 10.21314/jcf.2007.172
Reference: [4] Malherbe, E. De: A simple probabilistic approach to the pricing of credit default swap covenants.J. Risk 8 (2006), 85-113. 10.21314/jor.2006.130
Reference: [5] Duffie, D., Singleton, K. J.: An econometric model of the term structure of interest-rate swap yields.J. Finance 52 (1997), 1287-1321. 10.1111/j.1540-6261.1997.tb01111.x
Reference: [6] Fouque, J.-P., Papanicolaou, G., Sircar, K. R.: Derivatives in Financial Markets with Stochastic Volatility, Cambridge University Press, Cambridge.(2000). Zbl 0954.91025, MR 1768877
Reference: [7] Fouque, J.-P., Papanicolaou, G., Sircar, K. R.: Mean-reverting stochastic volatility.Int. J. Theor. Appl. Finance 3 (2000), 101-142. Zbl 1153.91497, 10.1142/S0219024900000061
Reference: [8] Fouque, J.-P., Papanicolaou, G., Sircar, K. R., Solna, K.: Singular perturbations in option pricing.SIAM J. Appl. Math. 63 (2003), 1648-1665. Zbl 1039.91024, MR 2001213, 10.1137/S0036139902401550
Reference: [9] He, X., Chen, W.: The pricing of credit default swaps under a generalized mixed fractional Brownian motion.Physica A 404 (2014), 26-33. Zbl 1402.91847, MR 3188756, /10.1016/j.physa.2014.02.046
Reference: [10] Jarrow, R. A., Turnbull, S. M.: Pricing derivatives on financial securities subject to credit risk.J. Finance 50 (1995), 53-86. 10.1111/j.1540-6261.1995.tb05167.x
Reference: [11] Joy, R. C., Schlig, E. S.: Thermal properties of very fast transistors.IEEE Transactions on Electron Devices 17 (1970), 586-594. 10.1109/t-ed.1970.17035
Reference: [12] Longstaff, F. A., Schwartz, E. S.: A simple approach to valuing risky fixed and floating rate debt.J. Finance 50 (1995), 789-819. 10.1111/j.1540-6261.1995.tb04037.x
Reference: [13] Merton, R. C.: On the pricing of corporate debt: the risk structure of interest rates.J. Finance 29 (1974), 449-470. MR 3235242, 10.2307/2978814
Reference: [14] O'Kane, D., Turnbull, S.: Valuation of credit default swaps.QCR Quarterly 2003-Q1/Q2 (2003), 17 pages.
Reference: [15] Ramm, A. G.: A simple proof of the Fredholm alternative and a characterization of the Fredholm operators.Am. Math. Mon. 108 (2001), 855-860. Zbl 1036.47005, MR 1864050, 10.2307/2695558
Reference: [16] Shreve, S. E.: Stochastic Calculus for Finance II. Continuous-Time Models.Springer Finance, Springer, New York (2004). Zbl 1068.91041, MR 2057928
Reference: [17] Tavella, D., Randall, C.: Pricing Financial Instruments: The Tinite Difference Method.John Wiley & Sons, New York (2000).
Reference: [18] Zhou, C.: The term structure of credit spreads with jump risk.J. Banking & Finance 25 (2005), 2015-2040. 10.1016/s0378-4266(00)00168-0
Reference: [19] Zhu, S.-P., Chen, W.-T.: Pricing perpetual American options under a stochastic-volatility model with fast mean reversion.Appl. Math. Lett. 24 (2011), 1663-1669. Zbl 1216.91035, MR 2803003, 10.1016/j.aml.2011.04.011
.

Files

Files Size Format View
AplMat_64-2019-3_7.pdf 333.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo