Previous |  Up |  Next

Article

Title: On the inverse eigenvalue problem for a special kind of acyclic matrices (English)
Author: Heydari, Mohammad
Author: Shahzadeh Fazeli, Seyed Abolfazl
Author: Karbassi, Seyed Mehdi
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 3
Year: 2019
Pages: 351-366
Summary lang: English
.
Category: math
.
Summary: We study an inverse eigenvalue problem (IEP) of reconstructing a special kind of symmetric acyclic matrices whose graph is a generalized star graph. The problem involves the reconstruction of a matrix by the minimum and maximum eigenvalues of each of its leading principal submatrices. To solve the problem, we use the recurrence relation of characteristic polynomials among leading principal minors. The necessary and sufficient conditions for the solvability of the problem are derived. Finally, a numerical algorithm and some examples are given. (English)
Keyword: inverse eigenvalue problem
Keyword: leading principal minor
Keyword: graph of a matrix
MSC: 05C50
MSC: 65F18
idZBL: Zbl 07088745
idMR: MR3956177
DOI: 10.21136/AM.2019.0242-18
.
Date available: 2019-05-24T08:52:37Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147722
.
Reference: [1] Chu, M. T., Golub, G. H.: Inverse Eigenvalue Problems: Theory, Algorithms, and Applications.Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2005). Zbl 1075.65058, MR 2263317, 10.1093/acprof:oso/9780198566649.001.0001
Reference: [2] Coakley, E. S., Rokhlin, V.: A fast divide-and-conquer algorithm for computing the spectra of real symmetric tridiagonal matrices.Appl. Comput. Harmon. Anal. 34 (2013), 379-414. Zbl 1264.65051, MR 3027910, 10.1016/j.acha.2012.06.003
Reference: [3] Hogben, L.: Spectral graph theory and the inverse eigenvalue problem of a graph.Electron. J. Linear Algebra 14 (2005), 12-31. Zbl 1162.05333, MR 2202430, 10.13001/1081-3810.1174
Reference: [4] Johnson, C. R., Duarte, A. L., Saiago, C. M.: Inverse eigenvalue problems and lists of multiplicities of eigengvalues for matrices whose graph is a tree: the case of generalized stars and double generalized stars.Linear Algebra Appl. 373 (2003), 311-330. Zbl 1035.15010, MR 2022294, 10.1016/S0024-3795(03)00582-2
Reference: [5] Monfared, K. H., Shader, B. L.: Construction of matrices with a given graph and prescribed interlaced spectral data.Linear Algebra Appl. 438 (2013), 4348-4358. Zbl 1282.05141, MR 3034535, 10.1016/j.laa.2013.01.036
Reference: [6] Nylen, P., Uhlig, F.: Inverse eigenvalue problems associated with spring-mass systems.Linear Algebra Appl. 254 (1997), 409-425. Zbl 0879.15007, MR 1436689, 10.1016/S0024-3795(96)00316-3
Reference: [7] Peng, J., Hu, X.-Y., Zhang, L.: Two inverse eigenvalue problems for a special kind of matrices.Linear Algebra Appl. 416 (2006), 336-347. Zbl 1097.65053, MR 2242733, 10.1016/j.laa.2005.11.017
Reference: [8] Sharma, D., Sen, M.: Inverse eigenvalue problems for two special acyclic matrices.Mathematics 4 (2016), Article ID 12, 11 pages. Zbl 1382.65109, 10.3390/math4010012
Reference: [9] Sharma, D., Sen, M.: Inverse eigenvalue problems for acyclic matrices whose graph is a dense centipede.Spec. Matrices 6 (2018), 77-92. Zbl 1391.15098, MR 3764333, 10.1515/spma-2018-0008
Reference: [10] Xu, W.-R., Chen, G.-L.: On inverse eigenvalue problems for two kinds of special banded matrices.Filomat 31 (2017), 371-385. MR 3628846, 10.2298/FIL1702371X
.

Files

Files Size Format View
AplMat_64-2019-3_6.pdf 299.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo