Previous |  Up |  Next

Article

Title: Transitive closure and transitive reduction in bidirected graphs (English)
Author: Bessouf, Ouahiba
Author: Khelladi, Abdelkader
Author: Zaslavsky, Thomas
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 2
Year: 2019
Pages: 295-315
Summary lang: English
.
Category: math
.
Summary: In a bidirected graph, an edge has a direction at each end, so bidirected graphs generalize directed graphs. We generalize the definitions of transitive closure and transitive reduction from directed graphs to bidirected graphs by introducing new notions of bipath and bicircuit that generalize directed paths and cycles. We show how transitive reduction is related to transitive closure and to the matroids of the signed graph corresponding to the bidirected graph. (English)
Keyword: bidirected graph
Keyword: signed graph
Keyword: matroid
Keyword: transitive closure
Keyword: transitive reduction
MSC: 05C20
MSC: 05C22
MSC: 05C38
idZBL: Zbl 07088785
idMR: MR3959945
DOI: 10.21136/CMJ.2019.0644-16
.
Date available: 2019-05-24T08:54:14Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147724
.
Reference: [1] Aho, A. V., Garey, M. R., Ullman, J. D.: The transitive reduction of a directed graph.SIAM J. Comput. 1 (1972), 131-137. Zbl 0247.05128, MR 0306032, 10.1137/0201008
Reference: [2] Berge, C.: Théorie des graphes et ses applications.Collection Universitaire de Mathématiques, 2, Dunod, Paris French (1958). Zbl 0088.15404, MR 0102822
Reference: [3] Bessouf, O.: Menger's Theorem in the Bidirected Graphs.Master's Thesis, Faculty of Mathematics, University of Science and Technology Houari Boumediene, Algiers French (1999).
Reference: [4] Harary, F.: On the notion of balance of a signed graph.Mich. Math. J. 2 (1954), 143-146. Zbl 0056.42103, MR 0067468, 10.1307/mmj/1028989917
Reference: [5] Harary, F.: Structural duality.Behavioral Sci. 2 (1957), 255-265. MR 0134799, 10.1002/bs.3830020403
Reference: [6] Khelladi, A.: Algebraic Properties of Combinative Structures.Thesis of Doctorate of State, Institute of Mathematics, University of Science and Technology Houari Boumediene, Algiers French (1985).
Reference: [7] Khelladi, A.: Nowhere-zero integral chains and flows in bidirected graphs.J. Comb. Theory, Ser. B 43 (1987), 95-115. Zbl 0617.90026, MR 0897242, 10.1016/0095-8956(87)90032-3
Reference: [8] Oxley, J.: Matroid Theory.Oxford Graduate Texts in Mathematics 21, Oxford University Press, Oxford (2011). Zbl 1254.05002, MR 2849819, 10.1093/acprof:oso/9780198566946.001.0001
Reference: [9] Zaslavsky, T.: Signed graphs.Discrete Appl. Math. 4 (1982), 47-74 erratum ibid. 5 1983 248. Zbl 0503.05060, MR 0683518, 10.1016/0166-218X(83)90047-1
Reference: [10] Zaslavsky, T.: Orientation of signed graphs.Eur. J. Comb. 12 (1991), 361-375. Zbl 0761.05095, MR 1120422, 10.1016/S0195-6698(13)80118-7
.

Files

Files Size Format View
CzechMathJ_69-2019-2_1.pdf 414.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo