Title:
|
Strongly 2-nil-clean rings with involutions (English) |
Author:
|
Chen, Huanyin |
Author:
|
Sheibani Abdolyousefi, Marjan |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
69 |
Issue:
|
2 |
Year:
|
2019 |
Pages:
|
317-330 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A $*$-ring $R$ is strongly 2-nil-$*$-clean if every element in $R$ is the sum of two projections and a nilpotent that commute. Fundamental properties of such $*$-rings are obtained. We prove that a $*$-ring $R$ is strongly 2-nil-$*$-clean if and only if for all $a\in R$, $a^2\in R$ is strongly nil-$*$-clean, if and only if for any $a\in R$ there exists a $*$-tripotent $e\in R$ such that $a-e\in R$ is nilpotent and $ea=ae$, if and only if $R$ is a strongly $*$-clean SN ring, if and only if $R$ is abelian, $J(R)$ is nil and $R/J(R)$ is $*$-tripotent. Furthermore, we explore the structure of such rings and prove that a $*$-ring $R$ is strongly 2-nil-$*$-clean if and only if $R$ is abelian and $R\cong R_1, R_2$ or $R_1\times R_2$, where $R_1/J(R_1)$ is a $*$-Boolean ring and $J(R_1)$ is nil, $R_2/J(R_2)$ is a $*$-Yaqub ring and $J(R_2)$ is nil. The uniqueness of projections of such rings are thereby investigated. (English) |
Keyword:
|
nilpotent |
Keyword:
|
projection |
Keyword:
|
$*$-tripotent ring |
Keyword:
|
symmetry |
Keyword:
|
strongly $*$-clean ring |
MSC:
|
16E50 |
MSC:
|
16U99 |
MSC:
|
16W10 |
idZBL:
|
Zbl 07088786 |
idMR:
|
MR3959946 |
DOI:
|
10.21136/CMJ.2018.0291-17 |
. |
Date available:
|
2019-05-24T08:54:34Z |
Last updated:
|
2021-07-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147726 |
. |
Reference:
|
[1] Berberian, S. K.: Baer $*$-Rings.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 195, Springer, New York (1972). Zbl 0242.16008, MR 0429975, 10.1007/978-3-642-15071-5 |
Reference:
|
[2] Chen, H.: Rings Related to Stable Range Conditions.Series in Algebra 11, World Scientific, Hackensack (2011). Zbl 1245.16002, MR 2752904, 10.1142/9789814329729 |
Reference:
|
[3] Chen, H., Harmancı, A., Özcan, A. Ç.: Strongly $J$-clean rings with involutions.Ring Theory and Its Applications Contemporary Mathematics 609, American Mathematical Society, Providence D. V. Huynh, et al. (2014), 33-44. Zbl 1296.16045, MR 3204350, 10.1090/conm/609/12122 |
Reference:
|
[4] Chen, H., Sheibani, M.: Strongly 2-nil-clean rings.J. Algebra Appl. 16 (2017), Article ID 1750178, 12 pages. Zbl 1382.16035, MR 3661645, 10.1142/S021949881750178X |
Reference:
|
[5] Cui, J., Wang, Z.: A note on strongly $*$-clean rings.J. Korean Math. Soc. 52 (2015), 839-851. Zbl 1327.16030, MR 3369115, 10.4134/JKMS.2015.52.4.839 |
Reference:
|
[6] Danchev, P. V.: Weakly UU rings.Tsukuba J. Math. 40 (2016), 101-118. Zbl 1377.16031, MR 3550934, 10.21099/tkbjm/1474747489 |
Reference:
|
[7] Danchev, P. V.: Invo-clean unital rings.Commun. Korean Math. Soc. 32 (2017), 19-27. Zbl 1357.16054, MR 3608475, 10.4134/CKMS.c160054 |
Reference:
|
[8] Gao, Y., Chen, J., Li, Y.: Some $*$-clean group rings.Algebra Colloq. 22 (2015), 169-180. Zbl 1316.16018, MR 3296765, 10.1142/S1005386715000152 |
Reference:
|
[9] Han, D., Ren, Y., Zhang, H.: On $*$-clean group rings over abelian groups.J. Algebra Appl. 16 (2017), Article ID 1750152, 11 pages. Zbl 1382.16018, MR 3661619, 10.1142/S0219498817501523 |
Reference:
|
[10] Hirano, Y., Tominaga, H.: Rings in which every element is the sum of two idempotents.Bull. Aust. Math. Soc. 37 (1988), 161-164. Zbl 0688.16015, MR 0930784, 10.1017/S000497270002668X |
Reference:
|
[11] Huang, H., Li, Y., Yuan, P.: On $*$-clean group rings II.Commun. Algebra 44 (2016), 3171-3181. Zbl 1355.16019, MR 3507177, 10.1080/00927872.2015.1044106 |
Reference:
|
[12] Koşan, T., Wang, Z., Zhou, Y.: Nil-clean and strongly nil-clean rings.J. Pure Appl. Algebra 220 (2016), 633-646. Zbl 1335.16026, MR 3399382, 10.1016/j.jpaa.2015.07.009 |
Reference:
|
[13] Li, Y., Parmenter, M. M., Yuan, P.: On $*$-clean group rings.J. Algebra Appl. 14 (2015), Article ID 1550004, 11 pages. Zbl 1318.16024, MR 3257826, 10.1142/S0219498815500048 |
Reference:
|
[14] Li, C., Zhou, Y.: On strongly $*$-clean rings.J. Algebra Appl. 10 (2011), 1363-1370. Zbl 1248.16030, MR 2864582, 10.1142/S0219498811005221 |
Reference:
|
[15] Ying, Z., Koşan, T., Zhou, Y.: Rings in which every element is a sum of two tripotents.Can. Math. Bull. 59 (2016), 661-672. Zbl 1373.16067, MR 3563747, 10.4153/CMB-2016-009-0 |
. |