Previous |  Up |  Next

Article

Title: Strongly 2-nil-clean rings with involutions (English)
Author: Chen, Huanyin
Author: Sheibani Abdolyousefi, Marjan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 2
Year: 2019
Pages: 317-330
Summary lang: English
.
Category: math
.
Summary: A $*$-ring $R$ is strongly 2-nil-$*$-clean if every element in $R$ is the sum of two projections and a nilpotent that commute. Fundamental properties of such $*$-rings are obtained. We prove that a $*$-ring $R$ is strongly 2-nil-$*$-clean if and only if for all $a\in R$, $a^2\in R$ is strongly nil-$*$-clean, if and only if for any $a\in R$ there exists a $*$-tripotent $e\in R$ such that $a-e\in R$ is nilpotent and $ea=ae$, if and only if $R$ is a strongly $*$-clean SN ring, if and only if $R$ is abelian, $J(R)$ is nil and $R/J(R)$ is $*$-tripotent. Furthermore, we explore the structure of such rings and prove that a $*$-ring $R$ is strongly 2-nil-$*$-clean if and only if $R$ is abelian and $R\cong R_1, R_2$ or $R_1\times R_2$, where $R_1/J(R_1)$ is a $*$-Boolean ring and $J(R_1)$ is nil, $R_2/J(R_2)$ is a $*$-Yaqub ring and $J(R_2)$ is nil. The uniqueness of projections of such rings are thereby investigated. (English)
Keyword: nilpotent
Keyword: projection
Keyword: $*$-tripotent ring
Keyword: symmetry
Keyword: strongly $*$-clean ring
MSC: 16E50
MSC: 16U99
MSC: 16W10
idZBL: Zbl 07088786
idMR: MR3959946
DOI: 10.21136/CMJ.2018.0291-17
.
Date available: 2019-05-24T08:54:34Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147726
.
Reference: [1] Berberian, S. K.: Baer $*$-Rings.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 195, Springer, New York (1972). Zbl 0242.16008, MR 0429975, 10.1007/978-3-642-15071-5
Reference: [2] Chen, H.: Rings Related to Stable Range Conditions.Series in Algebra 11, World Scientific, Hackensack (2011). Zbl 1245.16002, MR 2752904, 10.1142/9789814329729
Reference: [3] Chen, H., Harmancı, A., Özcan, A. Ç.: Strongly $J$-clean rings with involutions.Ring Theory and Its Applications Contemporary Mathematics 609, American Mathematical Society, Providence D. V. Huynh, et al. (2014), 33-44. Zbl 1296.16045, MR 3204350, 10.1090/conm/609/12122
Reference: [4] Chen, H., Sheibani, M.: Strongly 2-nil-clean rings.J. Algebra Appl. 16 (2017), Article ID 1750178, 12 pages. Zbl 1382.16035, MR 3661645, 10.1142/S021949881750178X
Reference: [5] Cui, J., Wang, Z.: A note on strongly $*$-clean rings.J. Korean Math. Soc. 52 (2015), 839-851. Zbl 1327.16030, MR 3369115, 10.4134/JKMS.2015.52.4.839
Reference: [6] Danchev, P. V.: Weakly UU rings.Tsukuba J. Math. 40 (2016), 101-118. Zbl 1377.16031, MR 3550934, 10.21099/tkbjm/1474747489
Reference: [7] Danchev, P. V.: Invo-clean unital rings.Commun. Korean Math. Soc. 32 (2017), 19-27. Zbl 1357.16054, MR 3608475, 10.4134/CKMS.c160054
Reference: [8] Gao, Y., Chen, J., Li, Y.: Some $*$-clean group rings.Algebra Colloq. 22 (2015), 169-180. Zbl 1316.16018, MR 3296765, 10.1142/S1005386715000152
Reference: [9] Han, D., Ren, Y., Zhang, H.: On $*$-clean group rings over abelian groups.J. Algebra Appl. 16 (2017), Article ID 1750152, 11 pages. Zbl 1382.16018, MR 3661619, 10.1142/S0219498817501523
Reference: [10] Hirano, Y., Tominaga, H.: Rings in which every element is the sum of two idempotents.Bull. Aust. Math. Soc. 37 (1988), 161-164. Zbl 0688.16015, MR 0930784, 10.1017/S000497270002668X
Reference: [11] Huang, H., Li, Y., Yuan, P.: On $*$-clean group rings II.Commun. Algebra 44 (2016), 3171-3181. Zbl 1355.16019, MR 3507177, 10.1080/00927872.2015.1044106
Reference: [12] Koşan, T., Wang, Z., Zhou, Y.: Nil-clean and strongly nil-clean rings.J. Pure Appl. Algebra 220 (2016), 633-646. Zbl 1335.16026, MR 3399382, 10.1016/j.jpaa.2015.07.009
Reference: [13] Li, Y., Parmenter, M. M., Yuan, P.: On $*$-clean group rings.J. Algebra Appl. 14 (2015), Article ID 1550004, 11 pages. Zbl 1318.16024, MR 3257826, 10.1142/S0219498815500048
Reference: [14] Li, C., Zhou, Y.: On strongly $*$-clean rings.J. Algebra Appl. 10 (2011), 1363-1370. Zbl 1248.16030, MR 2864582, 10.1142/S0219498811005221
Reference: [15] Ying, Z., Koşan, T., Zhou, Y.: Rings in which every element is a sum of two tripotents.Can. Math. Bull. 59 (2016), 661-672. Zbl 1373.16067, MR 3563747, 10.4153/CMB-2016-009-0
.

Files

Files Size Format View
CzechMathJ_69-2019-2_2.pdf 301.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo