Previous |  Up |  Next

Article

Title: The structures of Hopf $\ast $-algebra on Radford algebras (English)
Author: Mohammed, Hassan Suleman Esmael
Author: Chen, Hui-Xiang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 2
Year: 2019
Pages: 365-377
Summary lang: English
.
Category: math
.
Summary: We investigate the structures of Hopf $\ast $-algebra on the Radford algebras over $\mathbb {C}$. All the $*$-structures on $H$ are explicitly given. Moreover, these Hopf $*$-algebra structures are classified up to equivalence. (English)
Keyword: antilinear map
Keyword: $\ast $-structure
Keyword: Hopf $\ast $-algebra
MSC: 16G99
MSC: 16T05
idZBL: Zbl 07088790
idMR: MR3959950
DOI: 10.21136/CMJ.2018.0319-17
.
Date available: 2019-05-24T08:56:13Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147730
.
Reference: [1] Chen, H. X.: A class of noncommutative and noncocommutative Hopf algebras: The quantum version.Commun. Algebra 27 (1999), 5011-5023. Zbl 0942.16038, MR 1709261, 10.1080/00927879908826745
Reference: [2] Kassel, C.: Quantum Groups.Graduate Texts in Mathematics 155, Springer, New York (1995). Zbl 0808.17003, MR 1321145, 10.1007/978-1-4612-0783-2
Reference: [3] Lorenz, M.: Representations of finite-dimensional Hopf algebras.J. Algebra 188 (1997), 476-505. Zbl 0873.16023, MR 1435369, 10.1006/jabr.1996.6827
Reference: [4] Majid, S.: Foundations of Quantum Group Theory.Cambridge University Press, Cambridge (1995). Zbl 0857.17009, MR 1381692, 10.1017/CBO9780511613104
Reference: [5] Masuda, T., Mimachi, K., Nakagami, Y., Noumi, M., Saburi, Y., Ueno, K.: Unitary representations of the quantum $ SU_q(1,1)$: Structure of the dual space of ${\cal U}_q( sl(2))$.Lett. Math. Phys. 19 (1990), 187-194. Zbl 0704.17007, MR 1046342, 10.1007/BF01039311
Reference: [6] Mohammed, H. S. E., Li, T., Chen, H.: Hopf $\ast$-algebra structures on $H(1,q)$.Front. Math. China 10 (2015), 1415-1432. Zbl 1341.16035, MR 3403203, 10.1007/s11464-015-0454-2
Reference: [7] Montgomery, S.: Hopf Algebras and Their Actions on Rings.Regional Conference Series in Mathematics 82, American Mathematical Society, Providence (1993). Zbl 0793.16029, MR 1243637, 10.1090/cbms/082
Reference: [8] Podleś, P.: Complex quantum groups and their real representations.Publ. Res. Inst. Math. Sci. 28 (1992), 709-745. Zbl 0809.17003, MR 1195996, 10.2977/prims/1195167933
Reference: [9] Radford, D. E.: The order of the antipode of a finite dimensional Hopf algebra is finite.Am. J. Math. 98 (1976), 333-355. Zbl 0332.16007, MR 0407069, 10.2307/2373888
Reference: [10] Radford, D. E.: Hopf Algebras.Series on Knots and Everything 49, World Scientific, Hackensack (2012). Zbl 1266.16036, MR 2894855, 10.1142/9789814338660
Reference: [11] Sweedler, M. E.: Hopf Algebras.Mathematics Lecture Note Series, W. A. Benjamin, New York (1969). Zbl 0194.32901, MR 0252485
Reference: [12] Tucker-Simmons, M.: $\ast$-structures on module-algebras.Available at \ifPdf\pdfurl{https://arxiv.org/abs/1211.6652v2{https://arxiv.org/}\fi\ifPdf\pdfurl{https://arxiv.org/abs/1211.6652v2}{abs/1211.6652v2}\fi}.
Reference: [13] Daele, A. Van: The Haar measure on a compact quantum group.Proc. Am. Math. Soc. 123 (1995), 3125-3128. Zbl 0844.46032, MR 1277138, 10.2307/2160670
Reference: [14] Woronowicz, S. L.: Compact matrix pseudogroups.Commun. Math. Phys. 111 (1987), 613-665. Zbl 0627.58034, MR 0901157, 10.1007/BF01219077
Reference: [15] Woronowicz, S. L.: Twisted $ SU(2)$ group. An example of non-commutative differential calculus.Publ. Res. Inst. Math. Sci. 23 (1987), 117-181. Zbl 0676.46050, MR 0890482, 10.2977/prims/1195176848
Reference: [16] Woronowicz, S. L.: Krein-Tannak duality for compact matrix pseudogroups. Twisted $ SU(N)$ groups.Invent. Math. 93 (1988), 35-76. Zbl 0664.58044, MR 0943923, 10.1007/BF01393687
.

Files

Files Size Format View
CzechMathJ_69-2019-2_6.pdf 296.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo