Previous |  Up |  Next

Article

Title: A Diophantine inequality with four squares and one $k$th power of primes (English)
Author: Mu, Quanwu
Author: Zhu, Minhui
Author: Li, Ping
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 2
Year: 2019
Pages: 353-363
Summary lang: English
.
Category: math
.
Summary: Let $k\geq 5$ be an odd integer and $\eta $ be any given real number. We prove that if $\lambda _1$, $\lambda _2$, $\lambda _3$, $\lambda _4$, $\mu $ are nonzero real numbers, not all of the same sign, and $\lambda _1/\lambda _2$ is irrational, then for any real number $\sigma $ with $0<\sigma <1/(8\vartheta (k))$, the inequality $$ |\lambda _1p_1^2+\lambda _2p_2^2+\lambda _3p_3^2+\lambda _4p_4^2+\mu p_5^k+ \eta |<\Bigl (\max _{1\leq j\leq 5} p_j\Bigr )^{-\sigma } $$ has infinitely many solutions in prime variables $p_1, p_2, \cdots , p_5$, where $\vartheta (k)=3\times 2^{(k-5)/2}$ for $k=5,7,9$ and $\vartheta (k)=[(k^2+2k+5)/8]$ for odd integer $k$ with $k\geq 11$. This improves a recent result in W. Ge, T. Wang (2018). (English)
Keyword: Diophantine inequalities
Keyword: Davenport-Heilbronn method
Keyword: prime
MSC: 11D75
MSC: 11P55
idZBL: Zbl 07088789
idMR: MR3959949
DOI: 10.21136/CMJ.2018.0316-17
.
Date available: 2019-05-24T08:55:46Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147729
.
Reference: [1] Baker, A.: On some diophantine inequalities involving primes.J. Reine Angew. Math. 228 (1967), 166-181. Zbl 0155.09202, MR 0217016, 10.1515/crll.1967.228.166
Reference: [2] Baker, R. C., Harman, G.: Diophantine approximation by prime numbers.J. Lond. Math. Soc., II. Ser. 25 (1982), 201-215. Zbl 0443.10015, MR 0653378, 10.1112/jlms/s2-25.2.201
Reference: [3] Bourgain, J.: On the Vinogradov mean value.Proc. Steklov Inst. Math. 296 (2017), 30-40 translated from Tr. Mat. Inst. Steklova 296 2017 36-46. Zbl 1371.11138, MR 3640771, 10.1134/S0081543817010035
Reference: [4] Cook, R. J.: The value of additive forms at prime arguments.J. Théor. Nombres Bordx. 13 (2001), 77-91. Zbl 1047.11095, MR 1838071, 10.5802/jtnb.305
Reference: [5] Davenport, H., Heilbronn, H.: On indefinite quadratic forms in five variables.J. Lond. Math. Soc. 21 (1946), 185-193. Zbl 0060.11914, MR 0020578, 10.1112/jlms/s1-21.3.185
Reference: [6] Ge, W., Wang, T.: On Diophantine problems with mixed powers of primes.Acta Arith. 182 (2018), 183-199. Zbl 06857931, MR 3749367, 10.4064/aa170225-23-10
Reference: [7] Harman, G.: Trigonometric sums over primes I.Mathematika 28 (1981), 249-254. Zbl 0465.10029, MR 0645105, 10.1112/S0025579300010305
Reference: [8] Harman, G.: Diophantine approximation by prime numbers.J. Lond. Math. Soc., II. Ser. 44 (1991), 218-226. Zbl 0754.11010, MR 1136436, 10.1112/jlms/s2-44.2.218
Reference: [9] Harman, G.: The values of ternary quadratic forms at prime arguments.Mathematika 51 (2004), 83-96. Zbl 1107.11043, MR 2220213, 10.1112/S0025579300015527
Reference: [10] Heath-Brown, D. R.: Weyl's inequality, Hua's inequality, and Waring's problem.J. Lond. Math. Soc., II. Ser. 38 (1988), 216-230. Zbl 0619.10046, MR 0966294, 10.1112/jlms/s2-38.2.216
Reference: [11] Hua, L.-K.: Some results in additive prime-number theory.Q. J. Math., Oxf. Ser. 9 (1938), 68-80. Zbl 0018.29404, MR 3363459, 10.1093/qmath/os-9.1.68
Reference: [12] Languasco, A., Zaccagnini, A.: A Diophantine problem with a prime and three squares of primes.J. Number Theory 132 (2012), 3016-3028. Zbl 1306.11032, MR 2965205, 10.1016/j.jnt.2012.06.015
Reference: [13] Languasco, A., Zaccagnini, A.: A Diophantine problem with prime variables.Highly Composite: Papers in Number Theory V. Kumar Murty, R. Thangadurai Ramanujan Mathematical Society Lecture Notes Series 23, Ramanujan Mathematical Society, Mysore (2016), 157-168. Zbl 1382.11006, MR 3692733
Reference: [14] Li, W., Wang, T.: Diophantine approximation with four squares and one $k$-th power of primes.J. Math. Sci. Adv. Appl. 6 (2010), 1-16. Zbl 1238.11047, MR 2828771
Reference: [15] Li, W., Wang, T.: Diophantine approximation with two primes and one square of prime.Chin. Q. J. Math. 27 (2012), 417-423. Zbl 1274.11111
Reference: [16] Matomäki, K.: Diophantine approximation by primes.Glasg. Math. J. 52 (2010), 87-106. Zbl 1257.11035, MR 2587819, 10.1017/S0017089509990176
Reference: [17] Mu, Q.: Diophantine approximation with four squares and one $k$th power of primes.Ramanujan J. 39 (2016), 481-496. Zbl 06562458, MR 3472121, 10.1007/s11139-015-9740-6
Reference: [18] Mu, Q.: One Diophantine inequality with unlike powers of prime variables.Int. J. Number Theory 13 (2017), 1531-1545. Zbl 06737274, MR 3656207, 10.1142/S1793042117500853
Reference: [19] Mu, Q., Qu, Y.: A Diophantine inequality with prime variables and mixed power.Acta Math. Sin., Chin. Ser. 58 (2015), 491-500 Chinese. Zbl 1340.11055, MR 3443185
Reference: [20] Ramachandra, K.: On the sums $\sum\nolimits_{j=1}^K\lambda_jf_j(p_j)$.J. Reine Angew. Math. 262/263 (1973), 158-165. Zbl 0266.10017, MR 0327661, 10.1515/crll.1973.262-263.158
Reference: [21] Vaughan, R. C.: Diophantine approximation by prime numbers. I.Proc. Lond. Math. Soc., III. Ser. 28 (1974), 373-384. Zbl 0274.10045, MR 0337812, 10.1112/plms/s3-28.2.373
Reference: [22] Vaughan, R. C.: The Hardy-Littlewood Method.Cambridge Tracts in Mathematics 125, Cambridge University Press, Cambridge (1997). Zbl 0868.11046, MR 1435742, 10.1017/CBO9780511470929.001
Reference: [23] Vinogradov, I. M.: Representation of an odd number as a sum of three primes.C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 15 (1937), 169-172. Zbl 0016.29101
.

Files

Files Size Format View
CzechMathJ_69-2019-2_5.pdf 307.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo