[1] Bernardi, O.: 
Solution to a combinatorial puzzle arising from Mayer's theory of cluster integrals. Sémin. Lothar. Comb. 59 (2007), Article No. B59e, 10 pages. 
MR 2465401 | 
Zbl 1193.05012[7] Kaouche, A., Labelle, G.: 
Mayer and Ree-Hoover weights, graph invariants and bipartite complete graphs. P.U.M.A., Pure Math. Appl. 24 (2013), 19-29. 
MR 3197094 | 
Zbl 1313.05019[10] Labelle, G., Leroux, P., Ducharme, M. G.: 
Graph weights arising from Mayer's theory of cluster integrals. Sémin. Lothar. Comb. 54 (2005), Article No. B54m, 40 pages. 
MR 2341745 | 
Zbl 1188.82007[13] Mayer, J. E., Mayer, M. Göppert: 
Statistical Mechanics. J. Wiley and Sons, New York (1940),\99999JFM99999 66.1175.01. 
MR 0674819[15] Sidorenko, A. F.: 
Inequalities for functionals generated by bipartite graphs. Discrete Math. Appl. 2 (1991), Article No. 489-504 English. Russian original translation from Diskretn. Mat. 3 1991 50-65. 
DOI 10.1515/dma.1992.2.5.489 | 
MR 1138091 | 
Zbl 0787.05052