Previous |  Up |  Next

Article

Title: Derivative of the Donsker delta functionals (English)
Author: Suryawan, Herry Pribawanto
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 144
Issue: 2
Year: 2019
Pages: 161-176
Summary lang: English
.
Category: math
.
Summary: We prove that derivatives of any finite order of Donsker's delta functionals are well-defined elements in the space of Hida distributions. We also show the convergence to the derivative of Donsker's delta functionals of two different approximations. Finally, we present an existence result of finite product and infinite series of the derivative of the Donsker delta functionals. (English)
Keyword: Donsker delta functional
Keyword: white noise analysis
Keyword: distributional derivative
MSC: 28C20
MSC: 46F25
MSC: 60G20
MSC: 60H40
idZBL: Zbl 07088843
idMR: MR3974185
DOI: 10.21136/MB.2018.0078-17
.
Date available: 2019-06-21T11:33:30Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147757
.
Reference: [1] Aase, K., Ø{k}sendal, B., Ubø{e}, J.: Using the Donsker delta function to compute hedging strategies.Potential Anal. 14 (2001), 351-374. Zbl 0993.91022, MR 1825691, 10.1023/A:1011259820029
Reference: [2] Benth, F. E., Ng, S.-A.: Donsker's delta function and the covariance between generalized functionals.J. Lond. Math. Soc., II. Ser. 66 (2002), 1-13. Zbl 1013.60050, MR 1911216, 10.1112/S0024610702003319
Reference: [3] Bock, W., Silva, J. L. da, Suryawan, H. P.: Local times for multifractional Brownian motions in higher dimensions: a white noise approach.Infin. Dimens. Anal. Quantum Probab. Relat. Top. 19 (2016), Article ID 1650026, 16 pages. Zbl 06676046, MR 3584626, 10.1142/S0219025716500260
Reference: [4] Cesarano, C.: Integral representations and new generating functions of Chebyshev polynomials.Hacet. J. Math. Stat. 44 (2015), 535-546. Zbl 1336.33021, MR 3410856, 10.15672/HJMS.20154610029
Reference: [5] Draouil, O., Ø{k}sendal, B.: A Donsker delta functional approach to optimal insider control and applications to finance.Commun. Math. Stat. 3 (2015), 365-421 erratum ibid. 3 2015 535-540. Zbl 1341.49029, MR 3397146, 10.1007/s40304-015-0065-y
Reference: [6] Gradshteyn, I. S., Ryzhik, I. M.: Table of Integrals, Series, and Products.Elsevier/\hskip0ptAcademic Press, Amsterdam (2015). Zbl 1300.65001, MR 3307944, 10.1016/c2010-0-64839-5
Reference: [7] Grothaus, M., Riemann, F., Suryawan, H. P.: A white noise approach to the Feynman integrand for electrons in random media.J. Math. Phys. 55 (2014), Article ID 013507, 16 pages. Zbl 1291.82128, MR 3390439, 10.1063/1.4862744
Reference: [8] Hida, T., Kuo, H.-H., Potthoff, J., Streit, L.: White noise.An Infinite-Dimensional Calculus. Mathematics and Its Applications 253. Kluwer Academic Publishers, Dordrecht (1993). Zbl 0771.60048, MR 1244577, 10.1007/978-94-017-3680-0
Reference: [9] Hu, Y., Watanabe, S.: Donsker's delta functions and approximation of heat kernels by the time discretization methods.J. Math. Kyoto Univ. 36 (1996), 499-518. Zbl 0883.60056, MR 1417823, 10.1215/kjm/1250518506
Reference: [10] Hytönen, T., Neerven, J. van, Veraar, M., Weis, L.: Analysis in Banach Spaces. Vol. I. Martingales and Littlewood-Paley Theory.Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge 63. Springer, Cham (2016). Zbl 1366.46001, MR 3617205, 10.1007/978-3-319-48520-1
Reference: [11] Kondratiev, Y. G., Leukert, P., Potthoff, J., Streit, L., Westerkamp, W.: Generalized functionals in Gaussian spaces: The characterization theorem revisited.J. Funct. Anal. 141 (1996), 301-318. Zbl 0871.60033, MR 1418508, 10.1006/jfan.1996.0130
Reference: [12] Kuo, H.-H.: Donsker's delta function as a generalized Brownian functional and its application.Theory and Application of Random Fields. Proc. IFIP-WG 7/1 Working Conf., Bangalore, 1982 Lect. Notes Control Inf. Sci. 49. Springer, Berlin (1983), 167-178. Zbl 0522.60071, MR 0799941, 10.1007/BFb0044690
Reference: [13] Kuo, H.-H.: White Noise Distribution Theory.Probability and Stochastics Series. CRC Press, Boca Raton (1996). Zbl 0853.60001, MR 1387829
Reference: [14] Lascheck, A., Leukert, P., Streit, L., Westerkamp, W.: More about Donsker's delta function.Soochow J. Math. 20 (1994), 401-418. Zbl 0803.46043, MR 1292245
Reference: [15] Lee, Y.-J., Shih, H.-H.: Donsker's delta function of Lévy process.Acta Appl. Math. 63 (2000), 219-231. Zbl 0982.60067, MR 1834220, 10.1023/A:1010734611017
Reference: [16] Obata, N.: White Noise Calculus and Fock Space.Lecture Notes in Mathematics 1577. Springer, Berlin (1994). Zbl 0814.60058, MR 1301775, 10.1007/BFb0073952
Reference: [17] Rosen, J.: Derivatives of self-intersection local times.38th seminar on probability. Lecture Notes in Math. 1857 Springer, Berlin (2005), 263-281 M. Émery et al. Zbl 1063.60110, MR 2126979, 10.1007/978-3-540-31449-3_18
Reference: [18] Stein, E. M., Shakarchi, R.: Complex Analysis.Princeton Lectures in Analysis 2. Princeton University Press, Princeton (2003). Zbl 1020.30001, MR 1976398
Reference: [19] Suryawan, H. P.: A white noise approach to the self-intersection local times of a Gaussian process.J. Indones. Math. Soc. 20 (2014), 111-124. Zbl 1334.60135, MR 3274070, 10.22342/jims.20.2.136.111-124
Reference: [20] Watanabe, S.: Donsker's $\delta$-functions in the Malliavin calculus.Stochastic Analysis. Proc. Conf., Haifa, 1991 Academic Press, Boston (1991), 495-502 E. Mayer-Wolf et al. Zbl 0748.60047, MR 1119846, 10.1016/B978-0-12-481005-1.50032-6
Reference: [21] Watanabe, S.: Some refinements of Donsker's delta functions.Stochastic Analysis on Infinite Dimensional Spaces. Proc. U.S.-Japan bilateral seminar, Baton Rouge, 1994 Pitman Res. Notes Math. Ser. 310. Longman Scientific Technical, Harlow (1994), 308-324 H. Kunita et al. Zbl 0820.60036, MR 1415679
.

Files

Files Size Format View
MathBohem_144-2019-2_5.pdf 346.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo