Previous |  Up |  Next

Article

Title: Real quadratic number fields with metacyclic Hilbert $2$-class field tower (English)
Author: Essahel, Said
Author: Dakkak, Ahmed
Author: Mouhib, Ali
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 144
Issue: 2
Year: 2019
Pages: 177-190
Summary lang: English
.
Category: math
.
Summary: We begin by giving a criterion for a number field $K$ with 2-class group of rank 2 to have a metacyclic Hilbert 2-class field tower, and then we will determine all real quadratic number fields $\mathbb Q(\sqrt d)$ that have a metacyclic nonabelian Hilbert $2$-class field tower. (English)
Keyword: class field tower
Keyword: class group
Keyword: real quadratic number field
Keyword: metacyclic group
MSC: 11R11
MSC: 11R29
MSC: 11R37
idZBL: Zbl 07088844
idMR: MR3974186
DOI: 10.21136/MB.2018.0102-17
.
Date available: 2019-06-21T11:33:54Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147758
.
Reference: [1] Azizi, A., Mouhib, A.: On the rank of the 2-class group of $\mathbb Q({\sqrt m},{\sqrt d})$ where $m=2$ or a prime $p\equiv 1\pmod 4$.Trans. Am. Math. Soc. 353 (2001), French 2741-2752. Zbl 0986.11073, MR 1828471, 10.1090/S0002-9947-01-02753-2
Reference: [2] Azizi, A., Mouhib, A.: Capitulation of the 2-ideal classes of biquadratic fields whose class field differs from the Hilbert class field.Pac. J. Math. 218 French (2005), 17-36. Zbl 1152.11345, MR 2224587, 10.2140/pjm.2005.218.17
Reference: [3] Benjamin, E., Lemmermeyer, F., Snyder, C.: Real quadratic fields with abelian 2-class field tower.J. Number Theory 73 (1998), 182-194. Zbl 0919.11073, MR 1658015, 10.1006/jnth.1998.2291
Reference: [4] Berkovich, Y., Janko, Z.: On subgroups of finite $p$-group.Isr. J. Math. 171 (2009), 29-49. Zbl 1181.20017, MR 2520099, 10.1007/s11856-009-0038-5
Reference: [5] Martinet, J.: Tours de corps de classes et estimations de discriminants.Invent. Math. 44 French (1978), 65-73. Zbl 0369.12007, MR 0460281, 10.1007/BF01389902
Reference: [6] Mouhib, A.: On the parity of the class number of multiquadratic number fields.J. Number Theory 129 (2009), 1205-1211. Zbl 1167.11039, MR 2521470, 10.1016/j.jnt.2008.12.013
Reference: [7] Mouhib, A.: On 2-class field towers of some real quadratic number fields with 2-class groups of rank 3.Ill. J. Math. 57 (2013), 1009-1018. Zbl 1302.11090, MR 3285864, 10.1215/ijm/1417442559
Reference: [8] Mouhib, A.: A positive proportion of some quadratic number fields with infinite Hilbert 2-class field tower.Ramanujan J. 40 (2016), 405-412. Zbl 06580117, MR 3490564, 10.1007/s11139-015-9713-9
Reference: [9] Taussky, O.: A remark on the class field tower.J. London Math. Soc. 12 (1937), 82-85. Zbl 0016.20002, MR 1574658, 10.1112/jlms/s1-12.1.82
.

Files

Files Size Format View
MathBohem_144-2019-2_6.pdf 309.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo