Previous |  Up |  Next

Article

Title: $\alpha$-modules and generalized submodules (English)
Author: Rafiquddin, Rafiquddin
Author: Hasan, Ayazul
Author: Ahmad, Mohammad Fareed
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 27
Issue: 1
Year: 2019
Pages: 13-26
Summary lang: English
.
Category: math
.
Summary: A QTAG-module $M$ is an $\alpha$-module, where $\alpha $ is a limit ordinal, if $M/H_\beta (M)$ is totally projective for every ordinal $\beta < \alpha$. In the present paper $\alpha $-modules are studied with the help of $\alpha $-pure submodules, $\alpha $-basic submodules, and $\alpha$-large submodules. It is found that an $\alpha $-closed $\alpha$-module is an $\alpha $-injective. For any ordinal $\omega \leq \alpha \leq \omega _1$ we prove that an $\alpha $-large submodule $L$ of an $\omega _1$-module $M$ is summable if and only if $M$ is summable. (English)
Keyword: $\alpha$-modules
Keyword: $\alpha$-pure submodules
Keyword: $\alpha$-basic submodules
Keyword: $\alpha$-large submodules.
MSC: 16K20
idZBL: Zbl 1464.16013
idMR: MR3977474
.
Date available: 2019-06-28T14:45:31Z
Last updated: 2021-11-28
Stable URL: http://hdl.handle.net/10338.dmlcz/147765
.
Reference: [1] Ansari, A. H., Ahmad, M., Khan, M.Z.: Some decomposition theorems on $S_2$-modules. III.Tamkang J. Math., 12, 2, 1981, 147-154, MR 0676096
Reference: [2] Benabdallah, K., Singh, S.: On torsion abelian groups like modules.Lecture Notes in Mathematics, Springer Verlag, 1006, 1983, 639-653, MR 0722656
Reference: [3] Fuchs, L.: Infinite Abelian Groups.1970, Academic Press, New York, Vol. I. MR 0255673
Reference: [4] Fuchs, L.: Infinite Abelian Groups.1973, Academic Press, New York, Vol. II. Zbl 0257.20035, MR 0349869
Reference: [5] Hasan, A.: On essentially finitely indecomposable QTAG-modules.Afrika Mat., 27, 1, 2016, 79-85, MR 3459317, 10.1007/s13370-015-0318-7
Reference: [6] Hasan, A.: On generalized submodules of QTAG-modules.Georgian Math. J., 23, 2, 2016, 221-226, MR 3507951, 10.1515/gmj-2015-0061
Reference: [7] Hasan, A., Rafiquddin: Notes on summability in QTAG-modules.Tbilisi Math. J., 10, 2, 2017, 235-242, MR 3689617, 10.1515/tmj-2017-0039
Reference: [8] Hasan, A., Rafiquddin, Ahmad, M.F.: On $\alpha $-modules and their applications.Southeast Asian Bull. Math., 2019, To appear. MR 3966293
Reference: [9] Khan, M.Z.: $h$-divisible and basic submodules.Tamkang J. Math., 10, 2, 1979, 197-203, MR 0584534
Reference: [10] Mehdi, A., Abbasi, M.Y., Mehdi, F.: Nice decomposition series and rich modules.South East Asian J. Math. & Math. Sci., 4, 1, 2005, 1-6, MR 2208767
Reference: [11] Mehdi, A., Naji, S.A.R.K., Hasan, A.: Small homomorphisms and large submodules of QTAG-modules.Sci. Ser. A. Math Sci., 23, 2012, 19-24, MR 2961700
Reference: [12] Mehdi, A., Sikander, F., Naji, S.A.R.K.: Generalizations of basic and large submodules of QTAG-modules.Afrika Mat., 25, 4, 2014, 975-986, MR 3277863, 10.1007/s13370-013-0167-1
Reference: [13] Mehran, H., Singh, S.: On $\sigma $-pure submodules of QTAG-modules.Arch. Math., 46, 1986, 501-510, MR 0849855, 10.1007/BF01195018
Reference: [14] Naji, S.A.R.K.: A study of different structures in QTAG-modules.2010, Ph.D. Thesis, Aligarh Muslim University.
Reference: [15] Singh, S.: Some decomposition theorems in abelian groups and their generalizations.Ring Theory: Proceedings of Ohio University Conference 25, 1976, 183-189, Marcel Dekker, New York, MR 0435146
Reference: [16] Singh, S.: Abelian groups like modules.Act. Math. Hung, 50, 1987, 85-95, MR 0893248, 10.1007/BF01903367
Reference: [17] Singh, S., Khan, M.Z.: TAG-modules with complement submodules $h$-pure.Internat. J. Math. & Math. Sci., 21, 4, 1998, 801-814, MR 1642265, 10.1155/S0161171298001112
.

Files

Files Size Format View
ActaOstrav_27-2019-1_2.pdf 371.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo