Title:
|
Some approximate fixed point theorems without continuity of the operator using auxiliary functions (English) |
Author:
|
Chandok, Sumit |
Author:
|
Ansari, Arslan Hojjat |
Author:
|
Narang, Tulsi Dass |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
144 |
Issue:
|
3 |
Year:
|
2019 |
Pages:
|
251-271 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We introduce partial generalized convex contractions of order $4$ and rank $4$ using some auxiliary functions. We present some results on approximate fixed points and fixed points for such class of mappings having no continuity condition in $\alpha $-complete metric spaces and $\mu $-complete metric spaces. Also, as an application, some fixed point results in a metric space endowed with a binary relation and some approximate fixed point results in a metric space endowed with a graph have been obtained. Some examples are also provided to illustrate the main results and to show the usability of the given hypotheses. (English) |
Keyword:
|
$\varepsilon $-fixed point |
Keyword:
|
$\alpha $-admissible mapping |
Keyword:
|
partial generalized convex contraction of order $4$ and rank $4$ |
Keyword:
|
$\alpha $-complete metric space |
MSC:
|
47H10 |
MSC:
|
54H25 |
idZBL:
|
Zbl 07088850 |
idMR:
|
MR3985856 |
DOI:
|
10.21136/MB.2018.0095-17 |
. |
Date available:
|
2019-07-24T11:10:57Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147773 |
. |
Reference:
|
[1] Ansari, A. H., Shukla, S.: Some fixed point theorems for ordered $F$-$({\cal F},h)$-contraction and subcontraction in 0-$f$-orbitally complete partial metric spaces.J. Adv. Math. Stud. 9 (2016), 37-53. Zbl 1353.54030, MR 3495331 |
Reference:
|
[2] Berinde, M.: Approximate fixed point theorems.Stud. Univ. Babeş-Bolyai, Math. 51 (2006), 11-25. Zbl 1164.54028, MR 2246435 |
Reference:
|
[3] Browder, F. E., Petryshyn, W. V.: The solution by iteration of nonlinear functional equations in Banach spaces.Bull. Am. Math. Soc. 72 (1966), 571-575. Zbl 0138.08202, MR 0190745, 10.1090/S0002-9904-1966-11544-6 |
Reference:
|
[4] Chandok, S., Ansari, A. H.: Some results on generalized nonlinear contractive mappings.Comm. Opt. Theory 2017 (2017), Article ID 27, 12 pages. 10.23952/cot.2017.27 |
Reference:
|
[5] Dey, D., Laha, A. K., Saha, M.: Approximate coincidence point of two nonlinear mappings.J. Math. 2013 (2013), Article No. 962058, 4 pages. Zbl 1268.54022, MR 3100732, 10.1155/2013/962058 |
Reference:
|
[6] Dey, D., Saha, M.: Approximate fixed point of Reich operator.Acta Math. Univ. Comen., New Ser. 82 (2013), 119-123. Zbl 1324.54067, MR 3028154 |
Reference:
|
[7] Hussain, N., Kutbi, M. A., Salimi, P.: Fixed point theory in $\alpha$-complete metric spaces with applications.Abstr. Appl. Anal. 2014 (2014), Article ID 280817, 11 pages. MR 3166589, 10.1155/2014/280817 |
Reference:
|
[8] Istrăţescu, V. I.: Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters. I.Ann. Mat. Pura Appl., IV. Ser. 130 (1982), 89-104. Zbl 0477.54033, MR 0663966, 10.1007/BF01761490 |
Reference:
|
[9] Jaradat, M. M. M., Mustafa, Z., Ansari, A. H., Chandok, S., Dolićanin, Ć.: Some approximate fixed point results and application on graph theory for partial $(h,F)$-generalized convex contraction mappings with special class of functions on complete metric space.J. Nonlinear Sci. Appl. 10 (2017), 1695-1708. MR 3639736, 10.22436/jnsa.010.04.32 |
Reference:
|
[10] Kohlenbach, U., Leuştean, L.: The approximate fixed point property in product spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 66 (2007), 806-818. Zbl 1118.47047, MR 2288433, 10.1016/j.na.2005.12.020 |
Reference:
|
[11] Latif, A., Sintunavarat, W., Ninsri, A.: Approximate fixed point theorems for partial generalized convex contraction mappings in $\alpha$-complete metric spaces.Taiwanese J. Math. 19 (2015), 315-333. Zbl 1357.54034, MR 3313418, 10.11650/tjm.19.2015.4746 |
Reference:
|
[12] Miandaragh, M. A., Postolache, M., Rezapour, S.: Approximate fixed points of generalized convex contractions.Fixed Point Theory Appl. 2013 (2013), Article No. 255, 8 pages. Zbl 1321.54089, MR 3213091, 10.1186/1687-1812-2013-255 |
Reference:
|
[13] Reich, S.: Approximate selections, best approximations, fixed points, and invariant sets.J. Math. Anal. Appl. 62 (1978), 104-113. Zbl 0375.47031, MR 0514991, 10.1016/0022-247X(78)90222-6 |
Reference:
|
[14] Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for $\alpha$-$\psi$-contractive type mappings.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2154-2165. Zbl 1242.54027, MR 2870907, 10.1016/j.na.2011.10.014 |
Reference:
|
[15] Tijs, S., Torre, A., Brânzei, R.: Approximate fixed point theorems.Libertas Math. 23 (2003), 35-39 \99999MR99999 2002283 \vfill. Zbl 1056.47046, MR 2002283 |
. |