Previous |  Up |  Next

Article

Title: Inverse topology in MV-algebras (English)
Author: Forouzesh, Fereshteh
Author: Sajadian, Farhad
Author: Bedrood, Mahta
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 144
Issue: 3
Year: 2019
Pages: 273-285
Summary lang: English
.
Category: math
.
Summary: We introduce the inverse topology on the set of all minimal prime ideals of an MV-algebra $A$ and show that the set of all minimal prime ideals of $A$, namely ${\rm Min}(A)$, with the inverse topology is a compact space, Hausdorff, $T_{0}$-space and $T_{1}$-space. \endgraf Furthermore, we prove that the spectral topology on ${\rm Min}(A)$ is a zero-dimensional Hausdorff topology and show that the spectral topology on ${\rm Min}(A)$ is finer than the inverse topology on ${\rm Min}(A)$. Finally, by open sets of the inverse topology, we define and study a congruence relation of an MV-algebra. (English)
Keyword: minimal prime
Keyword: spectral topology
Keyword: inverse topology
Keyword: congruence
MSC: 06D35
MSC: 06F30
idZBL: Zbl 07088851
idMR: MR3985857
DOI: 10.21136/MB.2018.0117-17
.
Date available: 2019-07-24T11:11:27Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147774
.
Reference: [1] Belluce, L. P., Nola, A. Di, Sessa, S.: The prime spectrum of an MV-algebra.Math. Log. Q. 40 (1994), 331-346. Zbl 0815.06010, MR 1283500, 10.1002/malq.19940400304
Reference: [2] Bhattacharjee, P., Drees, K. M., McGovern, W. W.: Extensions of commutative rings.Topology Appl. 158 (2011), 1802-1814. Zbl 1235.13006, MR 2823692, 10.1016/j.topol.2011.06.015
Reference: [3] Chang, C. C.: Algebraic analysis of many valued logics.Trans. Am. Math. Soc. 88 (1958), 467-490. Zbl 0084.00704, MR 0094302, 10.2307/1993227
Reference: [4] Cignoli, R. L. O., D'Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning.Trends in Logic-Studia Logica Library 7. Kluwer Academic Publishers, Dordrecht (2000). Zbl 0937.06009, MR 1786097, 10.1007/978-94-015-9480-6
Reference: [5] Eslami, E.: The prime spectrum on BL-algebras and MV-algebras.Siminar Algebra Tarbiat Moallem University (2009), 58-61 Persian.
Reference: [6] Forouzesh, F., Eslami, E., Saeid, A. Borumand: Spectral topology on MV-modules.New Math. Nat. Comput. 11 (2015), 13-33. Zbl 1376.06013, MR 3325053, 10.1142/S1793005715500027
Reference: [7] Munkres, J. R.: Topology.Prentice Hall, Upper Saddle River (2000). Zbl 0951.54001, MR 3728284
Reference: [8] Piciu, D.: Algebras of Fuzzy Logic.Editura Universitaria din Craiova, Craiova (2007), Romanian.
.

Files

Files Size Format View
MathBohem_144-2019-3_4.pdf 280.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo