Previous |  Up |  Next

Article

Title: A note on $q$-partial difference equations and some applications to generating functions and $q$-integrals (English)
Author: Niu, Da-Wei
Author: Cao, Jian
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 3
Year: 2019
Pages: 671-694
Summary lang: English
.
Category: math
.
Summary: We study the condition on expanding an analytic several variables function in terms of products of the homogeneous generalized Al-Salam-Carlitz polynomials. As applications, we deduce bilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. We also gain multilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. Moreover, we obtain generalizations of Andrews-Askey integrals and Ramanujan $q$-beta integrals. At last, we derive $U(n+1)$ type generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. (English)
Keyword: $q$-partial difference equation
Keyword: homogeneous generalized Al-Salam-Carlitz polynomial
Keyword: generating function
Keyword: Andrews-Askey integral
Keyword: Ramanujan $q$-beta integral
MSC: 05A30
MSC: 11B65
MSC: 33D15
MSC: 33D45
MSC: 33D50
MSC: 35C11
idZBL: Zbl 07088812
idMR: MR3989274
DOI: 10.21136/CMJ.2018.0470-17
.
Date available: 2019-07-24T11:17:00Z
Last updated: 2021-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147785
.
Reference: [1] Abramov, S. A., Bronstein, M., Petkovšek, M.: On polynomial solutions of linear operator equations.Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC'95 A. H. M. Levelt ACM Press, New York (1995), 290-296. Zbl 0914.65132, MR 2280523, 10.1145/220346.220384
Reference: [2] Al-Salam, W. A., Carlitz, L.: Some orthogonal $q$-polynomials.Math. Nachr. 30 (1965), 47-61. Zbl 0135.27802, MR 0197804, 10.1002/mana.19650300105
Reference: [3] Andrews, G. E.: Summations and transformations for basic Appell series.J. Lond. Math. Soc., II. Ser. 4 (1972), 618-622. Zbl 0235.33003, MR 0306559, 10.1112/jlms/s2-4.4.618
Reference: [4] Andrews, G. E.: Applications of basic hypergeometric functions.SIAM Rev. 16 (1974), 441-484. Zbl 0299.33004, MR 0352557, 10.1137/1016081
Reference: [5] Andrews, G. E., Askey, R.: Another $q$-extension of the beta function.Proc. Am. Math. Soc. 81 (1981), 97-100. Zbl 0471.33001, MR 0589145, 10.2307/2043995
Reference: [6] Askey, R.: Two integrals of Ramanujan.Proc. Am. Math. Soc. 85 (1982), 192-194. Zbl 0503.33001, MR 0652440, 10.2307/2044279
Reference: [7] Atakishiyev, N. M., Feinsilver, P.: Two Ramanujan's integrals with a complex parameter.Proceedings of the IV Wigner Symposium 1995 N. M. Atakishiyev et al. World Scientific, Singapore (1996), 406-412. Zbl 0948.33500, MR 1474783, 10.1142/9789814531207
Reference: [8] Cao, J.: A note on $q$-integrals and certain generating functions.Stud. Appl. Math. 131 (2013), 105-118. Zbl 1302.33015, MR 3084689, 10.1111/sapm.12002
Reference: [9] Cao, J.: A note on generalized $q$-difference equations for $q$-beta and Andrews-Askey integral.J. Math. Anal. Appl. 412 (2014), 841-851. Zbl 1308.39010, MR 3147253, 10.1016/j.jmaa.2013.11.027
Reference: [10] Cao, J.: $q$-difference equations for generalized homogeneous $q$-operators and certain generating functions.J. Difference Equ. Appl. 20 (2014), 837-851. Zbl 1350.39004, MR 3210317, 10.1080/10236198.2013.823955
Reference: [11] Cao, J.: Homogeneous $q$-difference equations and generating functions for $q$-hypergeometric polynomials.Ramanujan J. 40 (2016), 177-192. Zbl 1335.05023, MR 3485998, 10.1007/s11139-015-9676-x
Reference: [12] Carlitz, L.: Generating functions for certain $Q$-orthogonal polynomials.Collect. Math. 23 (1972), 91-104. Zbl 0273.33012, MR 0316773
Reference: [13] Fang, J.-P.: $q$-difference equation and $q$-polynomials.Appl. Math. Comput. 248 (2014), 550-561. Zbl 1338.39016, MR 3276709, 10.1016/j.amc.2014.10.010
Reference: [14] Fang, J.-P.: Remarks on a generalized $q$-difference equation.J. Difference Equ. Appl. 21 (2015), 934-953. Zbl 1325.33012, MR 3393878, 10.1080/10236198.2015.1056176
Reference: [15] Gasper, G., Rahman, M.: Basic Hypergeometric Series.Encyclopedia of Mathematics and Its Applications 96, Cambridge University Press, Cambridge (2004). Zbl 1129.33005, MR 2128719, 10.1017/CBO9780511526251
Reference: [16] Gunning, R. C.: Introduction to Holomorphic Functions of Several Variables Vol. I: Function theory.The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Florence (1990). Zbl 0699.32001, MR 1052649, 10.1201/9780203750063
Reference: [17] Ismail, M. E. H.: Classical and Quantum Orthogonal Polynomials in One Variable.Encyclopedia of Mathematics and Its Applications 98, Cambridge University Press, Cambridge (2009). Zbl 1172.42008, MR 2542683, 10.1017/CBO9781107325982
Reference: [18] Koekoek, R., Lesky, P. A., Swarttouw, R. F.: Hypergeometric Orthogonal Polynomials and Their $q$-Analogues.Springer Monographs in Mathematics, Springer, Berlin (2010). Zbl 1200.33012, MR 2656096, 10.1007/978-3-642-05014-5
Reference: [19] Koekoek, R., Swarttouw, R. F.: The Askey Scheme of Hypergeometric Orthogonal Polynomials and Its $q$-Analogue.Tech. Rep. 98-17, Faculty of Technical Mathematics and Informatics, Delft University of Technology, Delft (1998).
Reference: [20] Liu, Z.-G.: Two $q$-difference equations and $q$-operator identities.J. Difference Equ. Appl. 16 (2010), 1293-1307. Zbl 1223.39005, MR 2738950, 10.1080/10236190902810385
Reference: [21] Liu, Z.-G.: An extension of the non-terminating $_6\phi_5$ summation and the Askey-Wilson polynomials.J. Difference Equ. Appl. 17 (2011), 1401-1411. Zbl 1229.05043, MR 2836870, 10.1080/10236190903530735
Reference: [22] Liu, Z.-G.: On the $q$-partial differential equations and $q$-series.The Legacy of Srinivasa Ramanujan B. C. Berndt Ramanujan Mathematical Society Lecture Notes Series 20, Ramanujan Mathematical Society, Mysore (2013), 213-250. Zbl 1310.05024, MR 3221313
Reference: [23] Liu, Z.-G.: A $q$-extension of a partial differential equation and the Hahn polynomials.Ramanujan J. 38 (2015), 481-501. Zbl 1326.05016, MR 3423009, 10.1007/s11139-014-9632-1
Reference: [24] Liu, Z.-G., Zeng, J.: Two expansion formulas involving the Rogers-Szegő polynomials with applications.Int. J. Number Theory 11 (2015), 507-525. Zbl 1327.11073, MR 3325432, 10.1142/S1793042115500268
Reference: [25] Malgrange, B.: Lectures on the Theory of Functions of Several Complex Variables.Lectures on Mathematics and Physics. Mathematics 13. Tata Institute of Fundamental Research, Bombay; Springer, Berlin (1984). Zbl 0561.32006, MR 0742775
Reference: [26] Milne, S. C.: Balanced $_3\phi_2$ summation theorems for $U(n)$ basic hypergeometric series.Adv. Math. 131 (1997), 93-187. Zbl 0886.33014, MR 1475046, 10.1006/aima.1997.1658
Reference: [27] Wang, M.: A remark on Andrews-Askey integral.J. Math. Anal. Appl. 341 (2008), 1487-1494. Zbl 1142.33006, MR 2398544, 10.1016/j.jmaa.2007.11.011
Reference: [28] Wang, M.: A new probability distribution with applications.Pac. J. Math. 247 (2010), 241-255. Zbl 1205.60037, MR 2718213, 10.2140/pjm.2010.247.241
Reference: [29] Wilf, H. S.: Generatingfunctionology.Academic Press, Boston (1994). Zbl 0831.05001, MR 1277813, 10.1016/c2009-0-02369-1
Reference: [30] Zhang, Z., Liu, M.: Applications of operator identities to the multiple $q$-binomial theorem and $q$-Gauss summation theorem.Discrete Math. 306 (2006), 1424-1437. Zbl 1095.05002, MR 2237725, 10.1016/j.disc.2006.01.025
.

Files

Files Size Format View
CzechMathJ_69-2019-3_7.pdf 365.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo