Previous |  Up |  Next

Article

Title: Generalized notions of amenability for a class of matrix algebras (English)
Author: Sahami, Amir
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 2
Year: 2019
Pages: 199-208
Summary lang: English
.
Category: math
.
Summary: We investigate the amenability and its related homological notions for a class of $I\times I$-upper triangular matrix algebra, say ${\rm UP}(I,A)$, where $A$ is a Banach algebra equipped with a nonzero character. We show that ${\rm UP}(I,A)$ is pseudo-contractible (amenable) if and only if $I$ is singleton and $A$ is pseudo-contractible (amenable), respectively. We also study pseudo-amenability and approximate biprojectivity of ${\rm UP}(I,A)$. (English)
Keyword: upper triangular Banach algebra
Keyword: amenability
Keyword: left $\varphi$-amenability
Keyword: approximate biprojectivity
MSC: 43A07
MSC: 43A20
MSC: 46M10
idZBL: Zbl 07144888
idMR: MR3982467
DOI: 10.14712/1213-7243.2019.002
.
Date available: 2019-08-05T09:46:15Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147811
.
Reference: [1] Aghababa H. P., Shi L. Y., Wu Y. J.: Generalized notions of character amenability.Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 7, 1329–1350. MR 3068583, 10.1007/s10114-013-0627-4
Reference: [2] Alaghmandan M., Nasr-Isfahani R., Nemati M.: On $\phi$-contractibility of the Lebesgue-Fourier algebra of a locally compact group.Arch. Math. (Basel) 95 (2010), no. 4, 373–379. MR 2727314, 10.1007/s00013-010-0177-2
Reference: [3] Choi Y., Ghahramani F., Zhang Y.: Approximate and pseudo-amenability of various classes of Banach algebras.J. Funct. Anal. 256 (2009), no. 10, 3158–3191. MR 2504522, 10.1016/j.jfa.2009.02.012
Reference: [4] Dashti M., Nasr-Isfahani R., Soltani Renani S.: Character amenability of Lipschitz algebras.Canad. Math. Bull. 57 (2014), no. 1, 37–41. MR 3150714, 10.4153/CMB-2012-015-3
Reference: [5] Dales H. G., Lau A. T.-M., Strauss D.: Banach algebras on semigroups and on their compactifications.Mem. Amer. Math. Soc. 205 (2010), no. 966, 165 pages. MR 2650729
Reference: [6] Duncan J., Paterson A. L. T.: Amenability for discrete convolution semigroup algebras.Math. Scand. 66 (1990), no. 1, 141–146. MR 1060904, 10.7146/math.scand.a-12298
Reference: [7] Esslamzadeh G. H.: Double centralizer algebras of certain Banach algebras.Monatsh. Math. 142 (2004), no. 3, 193–203. MR 2071245, 10.1007/s00605-003-0046-1
Reference: [8] Forrest B. E., Marcoux L. W.: Derivations of triangular Banach algebras.Indiana. Univ. Math. J. 45 (1996), no. 2, 441–462. MR 1414337, 10.1512/iumj.1996.45.1147
Reference: [9] Forrest B. E., Marcoux L. W.: Weak amenability of triangular Banach algebras.Trans. Amer. Math. Soc. 354 (2002), no. 4, 1435–1452. MR 1873013, 10.1090/S0002-9947-01-02957-9
Reference: [10] Ghahramani F., Loy R. J.: Generalized notions of amenability.J. Funct. Anal. 208 (2004), no. 1, 229–260. MR 2034298, 10.1016/S0022-1236(03)00214-3
Reference: [11] Ghahramani F., Loy R. J., Zhang Y.: Generalized notions of amenability. II.J. Funct. Anal. 254 (2008), no. 7, 1776–1810. MR 2397875, 10.1016/j.jfa.2007.12.011
Reference: [12] Ghahramani F., Zhang Y.: Pseudo-amenable and pseudo-contractible Banach algebras.Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 1, 111–123. Zbl 1118.46046, MR 2296395, 10.1017/S0305004106009649
Reference: [13] Hu Z., Monfared M. S., Traynor T.: On character amenable Banach algebras.Studia Math. 193 (2009), no. 1, 53–78. MR 2506414, 10.4064/sm193-1-3
Reference: [14] Jabbari A., Abad T. M., Abadi M. Z.: On $\phi$-inner amenable Banach algebras.Colloq. Math. 122 (2011), no. 1, 1–10. MR 2755887, 10.4064/cm122-1-1
Reference: [15] Kaniuth E., Lau A. T., Pym J.: On $\phi$-amenability of Banach algebras.Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 1, 85–96. MR 2388235, 10.1017/S0305004107000874
Reference: [16] Nasr-Isfahani R., Soltani Renani S.: Character contractibility of Banach algebras and homological properties of Banach modules.Studia Math. 202 (2011), no. 3, 205–225. MR 2771651, 10.4064/sm202-3-1
Reference: [17] Runde V.: Lectures on Amenability.Lecture Notes in Mathematics, 1774, Springer, Berlin, 2002. MR 1874893
Reference: [18] Sahami A., Pourabbas A.: Approximate biprojectivity of certain semigroup algebras.Semigroup Forum 92 (2016), no. 2, 474–485. MR 3472027, 10.1007/s00233-015-9701-9
Reference: [19] Sahami A.: On biflatness and $\phi$-biflatness of some Banach algebras.Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80 (2018), no. 1, 111–122. MR 3785185
Reference: [20] Sahami A., Pourabbas A.: On $\phi$-biflat and $\phi$-biprojective Banach algebras.Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 5, 789–801. MR 3160589, 10.36045/bbms/1385390764
Reference: [21] Zhang Y.: Nilpotent ideals in a class of Banach algebras.Proc. Amer. Math. Soc. 127 (1999), no. 11, 3237–3242. MR 1605957, 10.1090/S0002-9939-99-04896-0
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-2_4.pdf 260.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo