Title:
|
Some results on $G_C$-flat dimension of modules (English) |
Author:
|
Udhayakumar, Ramalingam |
Author:
|
Muchtadi-Alamsyah, Intan |
Author:
|
Selvaraj, Chelliah |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
60 |
Issue:
|
2 |
Year:
|
2019 |
Pages:
|
187-198 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we study some properties of $G_C$-flat $R$-modules, where $C$ is a semidualizing module over a commutative ring $R$ and we investigate the relation between the $G_C$-yoke with the $C$-yoke of a module as well as the relation between the $G_C$-flat resolution and the flat resolution of a module over $GF$-closed rings. We also obtain a criterion for computing the $G_C$-flat dimension of modules. (English) |
Keyword:
|
$GF$-closed ring |
Keyword:
|
$G_C$-flat module |
Keyword:
|
$G_C$-flat dimension |
Keyword:
|
semidualizing module |
MSC:
|
18G20 |
MSC:
|
18G25 |
idZBL:
|
Zbl 07144887 |
idMR:
|
MR3982466 |
DOI:
|
10.14712/1213-7243.2019.007 |
. |
Date available:
|
2019-08-05T09:44:42Z |
Last updated:
|
2021-07-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147820 |
. |
Reference:
|
[1] Bennis D.: Rings over which the class of Gorenstein flat modules is closed under extentions.Comm. Algebra 37 (2009), no. 3, 855–868. MR 2503181, 10.1080/00927870802271862 |
Reference:
|
[2] Christensen L. W.: Gorenstein Dimensions.Lecture Notes in Mathematics, 1747, Springer, Berlin, 2000. MR 1799866, 10.1007/BFb0103984 |
Reference:
|
[3] Christensen L. W., Frankild A., Holm H.: On Gorenstein projective, injective and flat dimensions a functorial description with applications.J. Algebra 302 (2006), no. 1, 231–279. MR 2236602, 10.1016/j.jalgebra.2005.12.007 |
Reference:
|
[4] Enochs E., Jenda O. M. G.: Relative Homological Algebra.De Gruyter Expositions in Mathematics, 30, Walter de Gruyter, Berlin, 2000. Zbl 0952.13001, MR 1753146 |
Reference:
|
[5] Enochs E., Jenda O. M. G., Torrecillas B.: Gorenstein flat modules.Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), no. 1, 1–9. MR 1248299 |
Reference:
|
[6] Foxby H.-B.: Gorenstein modules and related modules.Math. Scand. 31 (1972), 267–284. MR 0327752, 10.7146/math.scand.a-11434 |
Reference:
|
[7] Golod E. S.: $G$-dimension and generalized perfect ideals.Algebraic geometry and its applications, Trudy Mat. Inst. Steklov. 165 (1984), 62–66 (Russian). MR 0752933 |
Reference:
|
[8] Holm H.: Gorenstein homological dimensions.J. Pure Appl. Algebra 189 (2004), no. 1–3, 167–193. MR 2038564, 10.1016/j.jpaa.2003.11.007 |
Reference:
|
[9] Holm H., Jørgensen P.: Semidualizing modules and related Gorenstein homological dimensions.J. Pure. Appl. Algebra 205 (2006), no. 2, 423–445. MR 2203625, 10.1016/j.jpaa.2005.07.010 |
Reference:
|
[10] Holm H., White D.: Foxby equivalence over associative rings.J. Math. Kyoto Univ. 47 (2007), no. 4, 781–808. MR 2413065, 10.1215/kjm/1250692289 |
Reference:
|
[11] Huang C., Huang Z.: Gorenstein syzygy modules.J. Algebra 324 (2010), no. 12, 3408–3419. MR 2735390, 10.1016/j.jalgebra.2010.10.010 |
Reference:
|
[12] Liu Z., Yang X.: Gorenstein projective, injective and flat modules.J. Aust. Math. Soc. 87 (2009), no. 3, 395–407. MR 2576573, 10.1017/S1446788709000093 |
Reference:
|
[13] Rotman J. J.: An Introduction to Homological Algebra.Pure and Applied Mathematics, 85, Academic Press, New York, 1979. Zbl 1157.18001, MR 0538169 |
Reference:
|
[14] Sather-Wagstaff S., Sharif T., White D.: AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules.Algebr. Represent. Theory 14 (2011), no. 3, 403–428. MR 2785915, 10.1007/s10468-009-9195-9 |
Reference:
|
[15] Selvaraj C., Udhayakumar R., Umamaheswaran A.: Gorenstein n-flat modules and their covers.Asian-Eur. J. Math. 7 (2014), no. 3, 1450051, 13 pages. MR 3257526, 10.1142/S179355711450051X |
Reference:
|
[16] Vasconcelos W. V.: Divisor Theory in Module Categories.North-Holland Mathematics Studies, 14, North-Holland Publishing Co., Amsterdam, American Elsevier Publishing Co., New York, 1974. MR 0498530 |
Reference:
|
[17] White D.: Gorenstein projective dimension with respect to a semidualizing module.J. Commut. Algebra 2 (2010), no. 1, 111–137. MR 2607104, 10.1216/JCA-2010-2-1-111 |
. |