| Title: | A $Q$-linear automorphism  of the reals with non-measurable graph (English) | 
| Author: | Scheinberg, Stephen | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 60 | 
| Issue: | 2 | 
| Year: | 2019 | 
| Pages: | 209-210 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | This note contains a proof of the existence of a one-to-one function $\Theta $ of $\,\mathbb{R}\,$ onto itself with the following properties: $\Theta $ is a rational-linear automorphism of $\mathbb{R}$, and the graph of $\Theta $ is a non-measurable subset of the plane. (English) | 
| Keyword: | non-measurable functions | 
| Keyword: | rational automorphism | 
| MSC: | 26A30 | 
| MSC: | 28A05 | 
| MSC: | 28A20 | 
| idZBL: | Zbl 07144889 | 
| idMR: | MR3982468 | 
| DOI: | 10.14712/1213-7243.2019.004 | 
| . | 
| Date available: | 2019-08-05T09:46:44Z | 
| Last updated: | 2021-07-05 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/147818 | 
| . | 
| Reference: | [1] Gelbaum B. R., Olmsted J. M. H.: Counterexamples in Analysis.The Mathesis Series Holden-Day, San Francisco, 1964. MR 0169961 | 
| Reference: | [2] Kharazishvili A. B.: Nonmeasurable Sets and Functions.North-Holland Mathematics Studies, 195, Elsevier Science B.V., Amsterdam, 2004. MR 2067444 | 
| . |