Title:
|
Sufficient conditions for a T-partial order obtained from triangular norms to be a lattice (English) |
Author:
|
Li, Lifeng |
Author:
|
Zhang, Jianke |
Author:
|
Zhou, Chang |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
55 |
Issue:
|
2 |
Year:
|
2019 |
Pages:
|
295-306 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For a t-norm T on a bounded lattice $(L, \leq)$, a partial order $\leq_{T}$ was recently defined and studied. In [11], it was pointed out that the binary relation $\leq_{T} $ is a partial order on $L$, but $(L, \leq_{T} )$ may not be a lattice in general. In this paper, several sufficient conditions under which $(L, \leq_{T} )$ is a lattice are given, as an answer to an open problem posed by the authors of [11]. Furthermore, some examples of t-norms on $L$ such that $(L, \leq_{T}) $ is a lattice are presented. (English) |
Keyword:
|
bounded lattice |
Keyword:
|
triangular norm |
Keyword:
|
T-partial order |
MSC:
|
03B52 |
MSC:
|
03E72 |
idZBL:
|
Zbl 07144939 |
idMR:
|
MR4014588 |
DOI:
|
10.14736/kyb-2019-2-0295 |
. |
Date available:
|
2019-09-30T15:01:54Z |
Last updated:
|
2020-04-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147838 |
. |
Reference:
|
[1] Birkhoff, G.: Lattice Theory..American Mathematical Society Colloquium Publishers, Providence, 1967. Zbl 0537.06001, MR 0227053, 10.1090/coll/025 |
Reference:
|
[2] Aşıcı, E., Karaçal, F.: On the T-partial order and properties..Inf. Sci. 267 (2014), 323-333. MR 3177320, 10.1016/j.ins.2014.01.032 |
Reference:
|
[3] Aşıcı, E.: An order induced by nullnorms and its properties..Fuzzy Sets Syst. 325 (2017), 35-46. MR 3690353, 10.1016/j.fss.2016.12.004 |
Reference:
|
[4] Casasnovas, J., Mayor, G.: Discrete t-norms and operations on extended multisets..Fuzzy Sets Syst. 1599 (2008), 1165-1177. Zbl 1176.03023, MR 2416385, 10.1016/j.fss.2007.12.005 |
Reference:
|
[5] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices..Inf. Sci. 367-368 (2016), 221-231. MR 3684677, 10.1016/j.ins.2016.05.036 |
Reference:
|
[6] Çaylı, G. D.: On a new class of t-norms and t-conorms on bounded lattices..Fuzzy Sets Syst. 332 (2018), 129-143. MR 3732255, 10.1016/j.fss.2017.07.015 |
Reference:
|
[7] Clifford, A. H.: Naturally totally ordered commutative semigroups..Amer. J. Math. 76 (1954), 631-646. MR 0062118, 10.2307/2372706 |
Reference:
|
[8] Drygaś, P.: Isotonic operations with zero element in bounded lattices..In: Soft Computing Foundations and Theoretical Aspect (K. Atanassov, O. Hryniewicz, and J. Kacprzyk,eds.), EXIT, Warszawa 2004, pp. 181-190. 10.1007/978-3-540-72950-1_19 |
Reference:
|
[9] Ertuvgrul, Ü., Kesiciovglu, M. N., Karaçal, F.: Ordering based on uninorms..Inform. Sci. 330 (2016), 315-327. 10.1016/j.ins.2015.10.019 |
Reference:
|
[10] Hartwig, R.: How to partially order regular elements..Math. Japon. 25 (1980), 1-13. MR 0571255 |
Reference:
|
[11] Karaçal, F., Kesiciovglu, M. N.: A T-partial order obtained from t-norms..Kybernetika 47 (2011), 300-314. MR 2828579 |
Reference:
|
[12] Karaçal, F., İnce, M. A., Mesiar, R.: Nullnorms on bounded lattices..Inf. Sci. 325 (2015), 227-236. MR 3392300, 10.1016/j.ins.2015.06.052 |
Reference:
|
[13] Kesiciovglu, M.N., Karaçal, F., Mesiar, R.: Order-equivalent triangular norms..Fuzzy Sets Syst. 268 (2015), 59-71. MR 3320247, 10.1016/j.fss.2014.10.006 |
Reference:
|
[14] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Academic Publishers, Dordrecht 2000. Zbl 1087.20041, MR 1790096, 10.1007/978-94-015-9540-7 |
Reference:
|
[15] Lawson, M.: The natural partial order on an abundant semigroup..Proc. Edinburgh Math. Soc. 30 (1987), 2, 169-186. MR 0892688 |
Reference:
|
[16] Lu, J., Wang, K. Y., Zhao, B.: Equivalence relations induced by the U-partial order..Fuzzy Sets Syst. 334 (2018), 73-82. MR 3742233, 10.1016/j.fss.2017.07.013 |
Reference:
|
[17] Mitsch, H.: A natural partial order for semigroups..Proc. Amer. Math. Soc. 97 (1986), 384-388. Zbl 0596.06015, MR 0840614, 10.1090/s0002-9939-1986-0840614-0 |
. |