Previous |  Up |  Next

Article

Keywords:
bounded lattice; triangular norm; T-partial order
Summary:
For a t-norm T on a bounded lattice $(L, \leq)$, a partial order $\leq_{T}$ was recently defined and studied. In [11], it was pointed out that the binary relation $\leq_{T} $ is a partial order on $L$, but $(L, \leq_{T} )$ may not be a lattice in general. In this paper, several sufficient conditions under which $(L, \leq_{T} )$ is a lattice are given, as an answer to an open problem posed by the authors of [11]. Furthermore, some examples of t-norms on $L$ such that $(L, \leq_{T}) $ is a lattice are presented.
References:
[1] Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publishers, Providence, 1967. DOI 10.1090/coll/025 | MR 0227053 | Zbl 0537.06001
[2] Aşıcı, E., Karaçal, F.: On the T-partial order and properties. Inf. Sci. 267 (2014), 323-333. DOI 10.1016/j.ins.2014.01.032 | MR 3177320
[3] Aşıcı, E.: An order induced by nullnorms and its properties. Fuzzy Sets Syst. 325 (2017), 35-46. DOI 10.1016/j.fss.2016.12.004 | MR 3690353
[4] Casasnovas, J., Mayor, G.: Discrete t-norms and operations on extended multisets. Fuzzy Sets Syst. 1599 (2008), 1165-1177. DOI 10.1016/j.fss.2007.12.005 | MR 2416385 | Zbl 1176.03023
[5] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inf. Sci. 367-368 (2016), 221-231. DOI 10.1016/j.ins.2016.05.036 | MR 3684677
[6] Çaylı, G. D.: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets Syst. 332 (2018), 129-143. DOI 10.1016/j.fss.2017.07.015 | MR 3732255
[7] Clifford, A. H.: Naturally totally ordered commutative semigroups. Amer. J. Math. 76 (1954), 631-646. DOI 10.2307/2372706 | MR 0062118
[8] Drygaś, P.: Isotonic operations with zero element in bounded lattices. In: Soft Computing Foundations and Theoretical Aspect (K. Atanassov, O. Hryniewicz, and J. Kacprzyk,eds.), EXIT, Warszawa 2004, pp. 181-190. DOI 10.1007/978-3-540-72950-1_19
[9] Ertuvgrul, Ü., Kesiciovglu, M. N., Karaçal, F.: Ordering based on uninorms. Inform. Sci. 330 (2016), 315-327. DOI 10.1016/j.ins.2015.10.019
[10] Hartwig, R.: How to partially order regular elements. Math. Japon. 25 (1980), 1-13. MR 0571255
[11] Karaçal, F., Kesiciovglu, M. N.: A T-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314. MR 2828579
[12] Karaçal, F., İnce, M. A., Mesiar, R.: Nullnorms on bounded lattices. Inf. Sci. 325 (2015), 227-236. DOI 10.1016/j.ins.2015.06.052 | MR 3392300
[13] Kesiciovglu, M.N., Karaçal, F., Mesiar, R.: Order-equivalent triangular norms. Fuzzy Sets Syst. 268 (2015), 59-71. DOI 10.1016/j.fss.2014.10.006 | MR 3320247
[14] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. DOI 10.1007/978-94-015-9540-7 | MR 1790096 | Zbl 1087.20041
[15] Lawson, M.: The natural partial order on an abundant semigroup. Proc. Edinburgh Math. Soc. 30 (1987), 2, 169-186. MR 0892688
[16] Lu, J., Wang, K. Y., Zhao, B.: Equivalence relations induced by the U-partial order. Fuzzy Sets Syst. 334 (2018), 73-82. DOI 10.1016/j.fss.2017.07.013 | MR 3742233
[17] Mitsch, H.: A natural partial order for semigroups. Proc. Amer. Math. Soc. 97 (1986), 384-388. DOI 10.1090/s0002-9939-1986-0840614-0 | MR 0840614 | Zbl 0596.06015
Partner of
EuDML logo