Previous |  Up |  Next

Article

Title: Periodic solutions of a class of third-order differential equations with two delays depending on time and state (English)
Author: Khemis, Rabah
Author: Ardjouni, Abdelouaheb
Author: Bouakkaz, Ahlème
Author: Djoudi, Ahcene
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 3
Year: 2019
Pages: 379-399
Summary lang: English
.
Category: math
.
Summary: The goal of the present paper is to establish some new results on the existence, uniqueness and stability of periodic solutions for a class of third order functional differential equations with state and time-varying delays. By Krasnoselskii's fixed point theorem, we prove the existence of periodic solutions and under certain sufficient conditions, the Banach contraction principle ensures the uniqueness of this solution. The results obtained in this paper are illustrated by an example. (English)
Keyword: periodic solution
Keyword: iterative differential equation
Keyword: fixed point theorem
Keyword: Green's function
MSC: 39B12
MSC: 39B82
idZBL: Zbl 07144901
idMR: MR4034439
DOI: 10.14712/1213-7243.2019.018
.
Date available: 2019-10-29T13:01:53Z
Last updated: 2021-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147856
.
Reference: [1] Babbage C.: An essay towards the calculus of functions.Philosophical Transactions of The Royal Society of London 105 (1815), 389–423.
Reference: [2] Berinde V.: Existence and approximation of solutions of some first order iterative differential equations.Miskolc Math. Notes 11 (2010), no. 1, 13–26. MR 2743858, 10.18514/MMN.2010.256
Reference: [3] Cooke K. L.: Functional-differential equations: Some models and perturbation problems.Differential Equations and Dynamical Systems, Proc. Internat. Sympos., Mayaguez, 1965, Academic Press, New York, 1967, pages 167–183. MR 0222409
Reference: [4] Driver R. D.: Delay-differential Equations and an Application to a Two-body Problem of Classical Electrodynamics.Thesis Ph.D., University of Minnesota, 1960. MR 2613114
Reference: [5] Eder E.: The functional-differential equation $x^{\prime }( t) =x( x( t) ) $.J. Differential Equations 54 (1984), no. 3, 390–400. MR 0760378, 10.1016/0022-0396(84)90150-5
Reference: [6] Fečkan M.: On a certain type of functional-differential equations.Math. Slovaca 43 (1993), no. 1, 39–43. MR 1216267
Reference: [7] Ge W., Mo Y.: Existence of solutions to differential-iterative equation.J. Beijing Inst. Tech. 6 (1997), no. 3, 192–200. MR 1604507
Reference: [8] Lauran M.: Existence results for some differential equations with deviating argument.Filomat 25 (2011), no. 2, 21–31. MR 2920248, 10.2298/FIL1102021L
Reference: [9] Li Y., Kuang Y.: Periodic solutions in periodic state-dependent delay equations and population models.Proc. Amer. Math. Soc. 130 (2002), no. 5, 1345–1353. MR 1879956, 10.1090/S0002-9939-01-06444-9
Reference: [10] Pelczyr A.: On some iterative differential equations. I.Zeszyty Nauk. Uniw. Jagiello. Prace Matemat. No. 12 (1968), 53–56. MR 0223627
Reference: [11] Ren J., Siegmun S., Chen Y.: Positive periodic solutions for third-order nonlinear differential equations.Electron. J. Differential Equations (2011), No. 66, 19 pages. MR 2801251
Reference: [12] Smart D. R.: Fixed Point Theorems.Cambridge Tracts in Mathematics, 66, Cambridge University Press, London, 1974. Zbl 0427.47036, MR 0467717
Reference: [13] Wang K.: On the equation $x^{\prime }( t) =f( x( x( t) ) ) $.Funkcial. Ekvac. 33 (1990), no. 3, 405–425. MR 1086769
Reference: [14] Zhao H. Y, Liu J.: Periodic solutions of an iterative functional differential equation with variable coefficients.Math. Methods Appl. Sci. 40 (2017), no. 1, 286–292. MR 3583054, 10.1002/mma.3991
Reference: [15] Zhao H. Y., Fečkan M.: Periodic solutions for a class of differential equations with delays depending on state.Math. Commun. 23 (2018), no. 1, 29–42. MR 3742187
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-3_7.pdf 304.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo