Previous |  Up |  Next

Article

Title: Infinitely many weak solutions for a non-homogeneous Neumann problem in Orlicz--Sobolev spaces (English)
Author: Afrouzi, Ghasem A.
Author: Shokooh, Shaeid
Author: Chung, Nguyen T.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 3
Year: 2019
Pages: 361-378
Summary lang: English
.
Category: math
.
Summary: Under a suitable oscillatory behavior either at infinity or at zero of the nonlinear term, the existence of infinitely many weak solutions for a non-homogeneous Neumann problem, in an appropriate Orlicz--Sobolev setting, is proved. The technical approach is based on variational methods. (English)
Keyword: non-homogeneous Neumann problem
Keyword: variational methods
Keyword: Orlicz--Sobolev space
MSC: 35D05
MSC: 35J20
MSC: 35J60
MSC: 46N20
MSC: 58E05
idZBL: Zbl 07144900
idMR: MR4034438
DOI: 10.14712/1213-7243.2019.016
.
Date available: 2019-10-29T13:00:26Z
Last updated: 2021-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147857
.
Reference: [1] Adams R. A.: Sobolev Spaces.Pure and Applied Mathematics, 65, Academic Press, New York, 1975. Zbl 1098.46001, MR 0450957
Reference: [2] Afrouzi G. A., Graef J. R., Shokooh S.: Multiple solutions for Neumann systems in an Orlicz–Sobolev space setting.Miskolc Math. Notes 18 (2017), no. 1, 31–45. MR 3669881, 10.18514/MMN.2017.1906
Reference: [3] Afrouzi G. A., Heidarkhani S., Shokooh S.: Infinitely many solutions for Steklov problems associated to non-homogeneous differential operators through Orlicz–Sobolev spaces.Complex Var. Elliptic Equ. 60 (2015), no. 11, 1505–1521. MR 3393865
Reference: [4] Afrouzi G. A., Rădulescu V., Shokooh S.: Multiple solutions of Neumann problems: an Orlicz–Sobolev space setting.Bull. Malays. Math. Sci. Soc. 40 (2017), no. 4, 1591–1611. MR 3712573, 10.1007/s40840-015-0153-x
Reference: [5] Bonanno G.: A critical point theorem via the Ekeland variational principle.Nonlinear Anal. 75 (2012), no. 5, 2992–3007. MR 2878492, 10.1016/j.na.2011.12.003
Reference: [6] Bonanno G., Bisci G. M., Rădulescu V.: Existence of three solutions for a non-homogeneous Neumann problem through Orlicz–Sobolev spaces.Nonlinear Anal. 74 (2011), no. 14, 4785–4795. MR 2810717, 10.1016/j.na.2011.04.049
Reference: [7] Bonanno G., Bisci G. M., Rădulescu V.: Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz–Sobolev spaces.C. R. Math. Acad. Sci. Paris 349 (2011), no. 5–6, 263–268. MR 2783317, 10.1016/j.crma.2011.02.009
Reference: [8] Bonanno G., Bisci G. M., Rădulescu V.: Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz–Sobolev spaces.Monatsh. Math. 165 (2012), no. 3–4, 305–318. MR 2891255, 10.1007/s00605-010-0280-2
Reference: [9] Bonanno G., Bisci G. M., Rădulescu V.: Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz–Sobolev spaces.Nonlinear Anal. 75 (2012), no. 12, 4441–4456. MR 2927113, 10.1016/j.na.2011.12.016
Reference: [10] Bonanno G., Candito P.: Infinitely many solutions for a class of discrete non-linear boundary value problems.Appl. Anal. 88 (2009), no. 4, 605–616. MR 2541143, 10.1080/00036810902942242
Reference: [11] Bonanno G., Di Bella B.: Infinitely many solutions for a fourth-order elastic beam equation.NoDEA Nonlinear Differential Equations Appl. 18 (2011), no. 3, 357–368. MR 2811057, 10.1007/s00030-011-0099-0
Reference: [12] Chabrowski J., Fu Y.: Existence of solutions for $p(x)$-Laplacian problems on a bounded domain.J. Math. Anal. Appl. 306 (2005), no. 2, 604–618. MR 2136336, 10.1016/j.jmaa.2004.10.028
Reference: [13] Clément Ph., de Pagter B., Sweers G., de Thélin F.: Existence of solutions to a semilinear elliptic system through Orlicz–Sobolev spaces.Mediterr. J. Math. 1 (2004), no. 3, 241–267. MR 2094464, 10.1007/s00009-004-0014-6
Reference: [14] D'Aguì G., Sciammetta A.: Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions.Nonlinear Anal. 75 (2012), no. 14, 5612–5619. MR 2942940, 10.1016/j.na.2012.05.009
Reference: [15] Diening L.: Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces.Bull. Sci. Math. 129 (2005), no. 8, 657–700. MR 2166733
Reference: [16] Fan X.: Solutions for $p(x)$-Laplacian Dirichlet problems with singular coefficients.J. Math. Anal. Appl. 312 (2005), no. 2, 464–477. MR 2179089, 10.1016/j.jmaa.2005.03.057
Reference: [17] Fan X., Zhao D.: On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$.J. Math. Anal. Appl. 263 (2001), no. 2, 424–446. MR 1866056
Reference: [18] Fan X., Zhang Q., Zhao D.: Eigenvalues of $p(x)$-Laplacian Dirichlet problem.J. Math. Anal. Appl. 302 (2005), no. 2, 306–317. MR 2107835, 10.1016/j.jmaa.2003.11.020
Reference: [19] Halsey T. C.: Electrorheological fluids.Science 258 (1992), 761–766. 10.1126/science.258.5083.761
Reference: [20] Kováčik O., Rákosník J.: On spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$.Czechoslovak Math. J. 41 (1991), no. 4, 592–618. MR 1134951
Reference: [21] Kristály A., Mihăilescu M., Rădulescu V.: Two non-trivial solutions for a non-homogeneous Neumann problem: an Orlicz–Sobolev space setting.Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), no. 2, 367–379. MR 2496969
Reference: [22] Mihăilescu M., Rădulescu V.: Eigenvalue problems associated with nonhomogeneous differential operators in Orlicz–Sobolev spaces.Anal. Appl. (Singap.) 6 (2008), no. 1, 83–98. MR 2380887, 10.1142/S0219530508001067
Reference: [23] Mihăilescu M., Rădulescu V.: Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev space.Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 2087–2111. MR 2473630, 10.5802/aif.2407
Reference: [24] Musielak J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics, 1034, Springer, Berlin, 1983. Zbl 0557.46020, MR 0724434
Reference: [25] Pfeiffer C., Mavroidis C., Cohen Y. B., Dolgin B.: Electrorheological fluid based force feedback device.Conference on Telemanipulator and Telepresence Technologies VI, Part of SPIE's Photonics East, Boston, Proc. 3840 (1999), 88–99.
Reference: [26] Rao M. M., Ren Z. D.: Theory of Orlicz Spaces.Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, New York. 1991. Zbl 0724.46032, MR 1113700
Reference: [27] Ricceri B.: A general variational principle and some of its applications.J. Comput. Appl. Math. 113 (2000), no. 1–2, 401–410. MR 1735837, 10.1016/S0377-0427(99)00269-1
Reference: [28] Růžička M.: Electrorheological Fluids: Modeling and Mathematical Theory.Lecture Notes in Mathematics, 1748, Springer, Berlin, 2000. Zbl 0968.76531, MR 1810360, 10.1007/BFb0104030
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-3_6.pdf 333.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo