[3] Berezin, F.A., Leites, D.A.:
Supermanifolds. Dokl. Akad. Nauk SSSR 224 (3) (1975), 505–508.
MR 0402795
[4] Deligne, P., Morgan, J.W.:
Notes on supersymmetry (following Joseph Bernstein). Quantum fields and strings: a course for mathematicians, vol. 1, AMS, 1999, pp. 41–97.
MR 1701597 |
Zbl 1170.58302
[5] Donagi, R., Witten, E.:
Supermoduli space in not projected. Proc. Sympos. Pure Math., 2015, String-Math 2012, pp. 19–71.
MR 3409787
[7] Kostant, B.:
Graded manifolds, graded Lie theory and prequantization. Lecture Notes in Math., vol. 570, Springer Verlag, 1987, pp. 177–306.
MR 0580292
[9] Manin, Y.I.:
Gauge field theory and complex geometry. Grundlehren der Mathematischen Wissenschaften, vol. 289, Springer-Verlag, Berlin, 1988, Translated from the Russian by N. Koblitz and J.R. King.
MR 0954833
[11] McDuff, D., Salamon, D.:
Introduction to symplectic topology. oxford mathematical monographs. oxford science publications ed., The Clarendon Press, Oxford University Press, New York, 1995.
MR 1373431
[14] Rothstein, M.:
The structure of supersymplectic supermanifolds. Lecture Notes in Phys., Springer, Berlin, 1991, Differential geometric methods in theoretical physics (Rapallo, 1990), pp. 331–343.
MR 1134168
[17] Varadarajan, V.S.:
Supersymmetry for mathematicians: An introduction. Courant Lect. Notes Math. 11, New York University, Courant Institute of Mathematical Sciences, 2004.
MR 2069561
[18] Vishnyakova, E.:
The splitting problem for complex homogeneous supermanifolds. J. Lie Theory 25 (2) (2015), 459–476.
MR 3346067