Previous |  Up |  Next

Article

Title: Non-split almost complex and non-split Riemannian supermanifolds (English)
Author: Kalus, Matthias
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 55
Issue: 4
Year: 2019
Pages: 229-238
Summary lang: English
.
Category: math
.
Summary: Non-split almost complex supermanifolds and non-split Riemannian supermanifolds are studied. The first obstacle for a splitting is parametrized by group orbits on an infinite dimensional vector space. For almost complex structures, the existence of a splitting is equivalent to the existence of local coordinates in which the almost complex structure can be represented by a purely numerical matrix, i.e. containing no Grassmann variables. For Riemannian metrics, terms up to degree 2 are allowed in such a local matrix representation, in order to preserve non-degeneracy. It is further shown that non-split structures appear in the almost complex case as deformations of a split reduction and in the Riemannian case as the deformation of an underlying metric. In contrast to non-split deformations of complex supermanifolds, these deformations can be restricted by cut-off functions to local deformations. A class of examples of nowhere split structures constructed from almost complex manifolds of dimension $6$ and higher, is provided for both cases. (English)
Keyword: supermanifold
Keyword: almost complex structure
Keyword: Riemannian metric
Keyword: non-split
MSC: 32Q60
MSC: 53C20
MSC: 58A50
idZBL: Zbl 07144738
idMR: MR4038358
DOI: 10.5817/AM2019-4-229
.
Date available: 2019-10-30T08:53:41Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147876
.
Reference: [1] Batchelor, M.: The structure of supermanifolds.Trans. Amer. Math. Soc. 253 (1979), 329–338. MR 0536951, 10.1090/S0002-9947-1979-0536951-0
Reference: [2] Batchelor, M.: Two approaches to supermanifolds.Trans. Amer. Math. Soc. 258 (1980), 257–270. MR 0554332, 10.1090/S0002-9947-1980-0554332-9
Reference: [3] Berezin, F.A., Leites, D.A.: Supermanifolds.Dokl. Akad. Nauk SSSR 224 (3) (1975), 505–508. MR 0402795
Reference: [4] Deligne, P., Morgan, J.W.: Notes on supersymmetry (following Joseph Bernstein).Quantum fields and strings: a course for mathematicians, vol. 1, AMS, 1999, pp. 41–97. Zbl 1170.58302, MR 1701597
Reference: [5] Donagi, R., Witten, E.: Supermoduli space in not projected.Proc. Sympos. Pure Math., 2015, String-Math 2012, pp. 19–71. MR 3409787
Reference: [6] Green, P.: On holomorphic graded manifolds.Proc. Amer. Math. Soc. 85 (4) (1982), 587–590. MR 0660609, 10.1090/S0002-9939-1982-0660609-6
Reference: [7] Kostant, B.: Graded manifolds, graded Lie theory and prequantization.Lecture Notes in Math., vol. 570, Springer Verlag, 1987, pp. 177–306. MR 0580292
Reference: [8] Koszul, J.-L.: Connections and splittings of supermanifolds.Differential Geom. Appl. 4 (2) (1994), 151–161. MR 1279014, 10.1016/0926-2245(94)00011-5
Reference: [9] Manin, Y.I.: Gauge field theory and complex geometry.Grundlehren der Mathematischen Wissenschaften, vol. 289, Springer-Verlag, Berlin, 1988, Translated from the Russian by N. Koblitz and J.R. King. MR 0954833
Reference: [10] Massey, W.S.: Obstructions to the existence of almost complex structures.Bull. Amer. Math. Soc. 67 (1961), 559–564. MR 0133137, 10.1090/S0002-9904-1961-10690-3
Reference: [11] McDuff, D., Salamon, D.: Introduction to symplectic topology.oxford mathematical monographs. oxford science publications ed., The Clarendon Press, Oxford University Press, New York, 1995. MR 1373431
Reference: [12] McHugh, A.: A Newlander-Nirenberg theorem for supermanifold.J. Math. Phys. 30 (5) (1989), 1039–1042. MR 0992576, 10.1063/1.528373
Reference: [13] Rothstein, M.: Deformations of complex supermanifolds.Proc. Amer. Math. Soc. 95 (2) (1985), 255–260. MR 0801334, 10.1090/S0002-9939-1985-0801334-0
Reference: [14] Rothstein, M.: The structure of supersymplectic supermanifolds.Lecture Notes in Phys., Springer, Berlin, 1991, Differential geometric methods in theoretical physics (Rapallo, 1990), pp. 331–343. MR 1134168
Reference: [15] Thomas, E.: Complex structures on real vector bundles.Amer. J. Math. 89 (1967), 887–908. MR 0220310, 10.2307/2373409
Reference: [16] Vaintrob, A.Yu.: Deformations of complex structures on supermanifolds.Functional Anal. Appl. 18 (2) (1984), 135–136. MR 0745703, 10.1007/BF01077827
Reference: [17] Varadarajan, V.S.: Supersymmetry for mathematicians: An introduction.Courant Lect. Notes Math. 11, New York University, Courant Institute of Mathematical Sciences, 2004. MR 2069561
Reference: [18] Vishnyakova, E.: The splitting problem for complex homogeneous supermanifolds.J. Lie Theory 25 (2) (2015), 459–476. MR 3346067
.

Files

Files Size Format View
ArchMathRetro_055-2019-4_4.pdf 502.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo