Previous |  Up |  Next

Article

Title: On a generalization of Henstock-Kurzweil integrals (English)
Author: Malý, Jan
Author: Kuncová, Kristýna
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 144
Issue: 4
Year: 2019
Pages: 393-422
Summary lang: English
.
Category: math
.
Summary: We study a scale of integrals on the real line motivated by the $MC_{\alpha }$ integral by Ball and Preiss and some recent multidimensional constructions of integral. These integrals are non-absolutely convergent and contain the Henstock-Kurzweil integral. Most of the results are of comparison nature. Further, we show that our indefinite integrals are a.e. approximately differentiable. An example of approximate discontinuity of an indefinite integral is also presented. (English)
Keyword: Henstock-Kurzweil integral
MSC: 26A39
idZBL: 07217262
idMR: MR4047344
DOI: 10.21136/MB.2019.0038-19
.
Date available: 2019-12-09T11:53:31Z
Last updated: 2020-08-14
Stable URL: http://hdl.handle.net/10338.dmlcz/147935
.
Reference: [1] Ball, T., Preiss, D.: Monotonically controlled integrals.Mathematics Almost Everywhere. In Memory of Solomon Marcus World Scientific Publishing, Hackensack A. Bellow et al. (2018), 69-92. MR 3838200, 10.1142/9789813237315_0005
Reference: [2] Bendová, H., Malý, J.: An elementary way to introduce a Perron-like integral.Ann. Acad. Sci. Fenn., Math. 36 (2011), 153-164. Zbl 1225.26016, MR 2797688, 10.5186/aasfm.2011.3609
Reference: [3] Bongiorno, B.: The Henstock-Kurzweil integral.Handbook of Measure Theory. Vol. I and II North-Holland, Amsterdam (2002), 587-615 E. Pap. Zbl 1024.26004, MR 1954623, 10.1016/B978-044450263-6/50014-2
Reference: [4] Burkill, J. C.: The approximately continuous Perron integral.Math. Z. 34 (1932), 270-278. Zbl 0002.38604, MR 1545252, 10.1007/BF01180588
Reference: [5] Pauw, T. De, Pfeffer, W. F.: Distributions for which $ div v=F$ has a continuous solution.Commun. Pure Appl. Math. 61 (2008), 230-260. Zbl 1137.35014, MR 2368375, 10.1002/cpa.20204
Reference: [6] Denjoy, A.: Une extension de l'intégrale de M. Lebesgue.C. R. Acad. Sci., Paris Sér. I Math. 154 (1912), 859-862 French. Zbl 43.0360.01
Reference: [7] Denjoy, A.: Sur la dérivation et son calcul inverse.C. R. Acad. Sci., Paris Sér. I Math. 162 (1916), 377-380 French. Zbl 46.0381.02, MR 0062821
Reference: [8] Evans, L. C., Gariepy, R. F.: Measure Theory and Fine Properties of Functions.Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). Zbl 0804.28001, MR 1158660
Reference: [9] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics 4. AMS, Providence (1994). Zbl 0807.26004, MR 1288751, 10.1090/gsm/004
Reference: [10] Gordon, R. A.: Some comments on an approximately continuous Khintchine integral.Real Anal. Exch. 20 (1994-95), 831-841. Zbl 0847.26011, MR 1348106, 10.2307/44152566
Reference: [11] Hencl, S.: On the notions of absolute continuity for functions of several variables.Fundam. Math. 173 (2002), 175-189. Zbl 1002.26007, MR 1924813, 10.4064/fm173-2-5
Reference: [12] Henstock, R.: Definitions of Riemann type of the variational integrals.Proc. London Math. Soc., III. Ser. 11 (1961), 402-418. Zbl 0099.27402, MR 0132147, 10.1112/plms/s3-11.1.402
Reference: [13] Henstock, R.: Theory of Integration.Butterworths Mathematical Texts. Butterworths & Co., London (1963). Zbl 0154.05001, MR 0158047
Reference: [14] Henstock, R.: The General Theory of Integration.Oxford Mathematical Monographs. Clarendon Press, Oxford (1991). Zbl 0745.26006, MR 1134656
Reference: [15] Honzík, P., Malý, J.: Non-absolutely convergent integrals and singular integrals.Collect. Math. 65 (2014), 367-377. Zbl 1305.26022, MR 3241000, 10.1007/s13348-013-0103-6
Reference: [16] Jarník, J., Kurzweil, J.: A non-absolutely convergent integral which admits $C^1$-transformations.Čas. Pěst. Mat. 109 (1984), 157-167. Zbl 0555.26005, MR 0744873
Reference: [17] Jarník, J., Kurzweil, J.: A non absolutely convergent integral which admits transformation and can be used for integration on manifolds.Czech. Math. J. 35 (1985), 116-139. Zbl 0614.26007, MR 0779340, 10.21136/CMJ.1985.102001
Reference: [18] Jarník, J., Kurzweil, J.: A new and more powerful concept of the PU-integral.Czech. Math. J. 38 (1988), 8-48. Zbl 0669.26006, MR 0925939, 10.21136/CMJ.1988.102199
Reference: [19] Jarník, J., Kurzweil, J., Schwabik, Š.: On Mawhin's approach to multiple nonabsolutely convergent integral.Čas. Pěst. Mat. 108 (1983), 356-380. Zbl 0555.26004, MR 0727536
Reference: [20] Jurkat, W. B.: The divergence theorem and Perron integration with exceptional sets.Czech. Math. J. 43 (1993), 27-45. Zbl 0789.26005, MR 1205229, 10.21136/CMJ.1993.128388
Reference: [21] Khintchine, A.: Sur une extension de l'intégrale de M. Denjoy.C. R. Acad. Sci. Paris, Sér. I Math. 162 (1916), 287-291 French. Zbl 46.0381.01
Reference: [22] Kubota, Y.: An integral of the Denjoy type.Proc. Japan Acad. 40 (1964), 713-717. Zbl 0141.24601, MR 0178113, 10.3792/pja/1195521564
Reference: [23] Kuncová, K.: $BV$-packing integral in $\Bbb R^n$.\ Available at https://arxiv.org/abs/1903.04908 (2019). MR 4122842
Reference: [24] Kuncová, K., Malý, J.: Non-absolutely convergent integrals in metric spaces.J. Math. Anal. Appl. 401 (2013), 578-600. Zbl 1264.26015, MR 3018009, 10.1016/j.jmaa.2012.12.044
Reference: [25] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (1957), 418-449. Zbl 0090.30002, MR 0111875, 10.21136/CMJ.1957.100258
Reference: [26] Kurzweil, J.: Nichtabsolut konvergente Integrale.Teubner-Texte zur Mathematik, Bd. 26. BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1980), German. Zbl 0441.28001, MR 0597703, 10.1112/blms/16.4.432
Reference: [27] Lusin, N.: Sur les propriétés de l'intégrale de M. Denjoy.C. R. Acad. Sci. Paris Sér. I Math. 155 (1912), 1475-1477 French. Zbl 43.0360.03, MR 0067182
Reference: [28] Malý, J.: Non-absolutely convergent integrals with respect to distributions.Ann. Mat. Pura Appl. (4) 193 (2014), 1457-1484. Zbl 1304.26006, MR 3262642, 10.1007/s10231-013-0338-6
Reference: [29] Malý, J., Pfeffer, W. F.: Henstock-Kurzweil integral on BV sets.Math. Bohem. 141 (2016), 217-237. Zbl 06587863, MR 3499785, 10.21136/MB.2016.16
Reference: [30] Mawhin, J.: Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields.Czech. Math. J. 31 (1981), 614-632. Zbl 0562.26004, MR 0631606, 10.21136/CMJ.1981.101777
Reference: [31] Mawhin, J.: Generalized Riemann integrals and the divergence theorem for differentiable vector fields.E. B. Christoffel: The Influence of his Work on Mathematics and The Physical Sciences. Int. Christoffel Sym., Aachen and Monschau, 1979 Birkhäuser, Basel (1981), 704-714 P. L. Butzer et al. Zbl 0562.26003, MR 0661109, 10.1007/978-3-0348-5452-8_55
Reference: [32] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral. Theory and Applications.Series in Real Analysis 15. World Scientific Publishing, Hackensack (2018). Zbl 06758513, MR 3839599, 10.1142/9432
Reference: [33] Novikov, A., Pfeffer, W. F.: An invariant Riemann type integral defined by figures.Proc. Am. Math. Soc. 120 (1994), 849-853. Zbl 0808.26006, MR 1182703, 10.1090/S0002-9939-1994-1182703-4
Reference: [34] Perron, O.: Über den Integralbegriff.Heidelb. Ak. Sitzungsber 14 (1914), 1-16 German. Zbl 45.0445.01
Reference: [35] Pfeffer, W. F.: Une intégrale Riemannienne et le théorème de divergence.C. R. Acad. Sci. Paris, Sér. I Math. 299 (1984), 299-301 French. Zbl 0574.26009, MR 0761251
Reference: [36] Pfeffer, W. F.: The multidimensional fundamental theorem of calculus.J. Aust. Math. Soc., Ser. A 43 (1987), 143-170. Zbl 0638.26011, MR 0896622, 10.1017/s1446788700029293
Reference: [37] Pfeffer, W. F.: The Gauss-Green theorem.Adv. Math. 87 (1991), 93-147. Zbl 0732.26013, MR 1102966, 10.1016/0001-8708(91)90063-D
Reference: [38] Pfeffer, W. F.: Derivation and Integration.Cambridge Tracts in Mathematics 140. Cambridge University Press, Cambridge (2001). Zbl 0980.26008, MR 1816996, 10.1017/CBO9780511574764
Reference: [39] Pfeffer, W. F.: Derivatives and primitives.Sci. Math. Jpn. 55 (2002), 399-425. Zbl 1010.26012, MR 1887074
Reference: [40] Preiss, D., Thomson, B. S.: The approximate symmetric integral.Can. J. Math. 41 (1989), 508-555. Zbl 0696.26004, MR 1013466, 10.4153/CJM-1989-023-8
Reference: [41] Saks, S.: Theory of the Integral.With two Additional Notes by Stefan Banach. Dover Publications, Mineola (1964). Zbl 1196.28001, MR 0167578
.

Files

Files Size Format View
MathBohem_144-2019-4_5.pdf 440.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo