Previous |  Up |  Next

Article

Title: On the uniform perfectness of groups of bundle homeomorphisms (English)
Author: Rybicki, Tomasz
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 55
Issue: 5
Year: 2019
Pages: 333-339
Summary lang: English
.
Category: math
.
Summary: Groups of homeomorphisms related to locally trivial bundles are studied. It is shown that these groups are perfect. Moreover if the homeomorphism isotopy group of the base is bounded then the bundle homeomorphism group of the total space is uniformly perfect. (English)
Keyword: homeomorphism group
Keyword: uniformly perfect
Keyword: continuously perfect
Keyword: bounded
Keyword: locally trivial bundle
MSC: 55R10
MSC: 57S05
MSC: 58D05
idZBL: Zbl 07144747
idMR: MR4057929
DOI: 10.5817/AM2019-5-333
.
Date available: 2019-12-09T12:25:30Z
Last updated: 2020-11-24
Stable URL: http://hdl.handle.net/10338.dmlcz/147945
.
Reference: [1] Anderson, R.D.: On homeomorphisms as products of a given homeomorphism and its inverse.Topology of 3-manifolds (M. Fort ed., ed.), Prentice-Hall, 1961, pp. 231–237. MR 0139684
Reference: [2] Burago, D., Ivanov, S., Polterovich, L.: Conjugation invariant norms on groups of geometric origin.Adv. Stud. Pure Math. 52 (2008), 221–250, Groups of diffeomorphisms. MR 2509711, 10.2969/aspm/05210221
Reference: [3] Edwards, R.D., Kirby, R.C.: Deformations of spaces of imbeddings.Ann. Math. (2) 93 (1971), 63–88. MR 0283802, 10.2307/1970753
Reference: [4] Epstein, D.B.A.: The simplicity of certain groups of homeomorphisms.Compositio Math. 22 (2) (1970), 165–173. MR 0267589
Reference: [5] Fisher, G.M.: On the group of all homeomorphisms of a manifold.Trans. Amer. Math. Soc. 97 (1960), 193–212. MR 0117712, 10.1090/S0002-9947-1960-0117712-9
Reference: [6] Fukui, K., Imanishi, H.: On commutators of foliation preserving homeomorphisms.J. Math. Soc. Japan 51 (1) (1999), 227–236. MR 1661044, 10.2969/jmsj/05110227
Reference: [7] Kowalik, A., Rybicki, T.: On the homeomorphism groups on manifolds and their universal coverings.Cent. Eur. J. Math. 9 (2011), 1217–1231. MR 2836715, 10.2478/s11533-011-0081-4
Reference: [8] Lech, J., Michalik, I., Rybicki, T.: On the boundedness of equivariant homeomorphism groups.Opuscula Math. 38 (2018), 395–408. MR 3781620, 10.7494/OpMath.2018.38.3.395
Reference: [9] Ling, W.: Factorizable groups of homeomorphisms.Compositio Math. 51 (1) (1984), 41–51. MR 0734783
Reference: [10] Mather, J.N.: The vanishing of the homology of certain groups of homeomorphisms.Topology 10 (1971), 297–298. MR 0288777, 10.1016/0040-9383(71)90022-X
Reference: [11] McDuff, D.: The lattice of normal subgroups of the group of diffeomorphisms or homeomorphisms of an open manifold.J. London Math. Soc. (2) 18 (1978), 353–364. MR 0509952, 10.1112/jlms/s2-18.2.353
Reference: [12] Michalik, I., Rybicki, T.: On the structure of the commutator subgroup of certain homeomorphism groups.Topology Appl. 158 (2011), 1314–1324. MR 2806364
Reference: [13] Munkres, J.: Elementary differential topology.Ann. Math. Studies, vol. 54, Princeton University Press, 1966. MR 0198479
Reference: [14] Rybicki, T.: On commutators of equivariant homeomorphisms.Topology Appl. 154 (2007), 1561–1564. MR 2317062, 10.1016/j.topol.2006.12.003
Reference: [15] Rybicki, T.: Boundedness of certain automorphism groups of an open manifold.Geom. Dedicata 151 (1) (2011), 175–186. MR 2780744, 10.1007/s10711-010-9525-4
Reference: [16] Rybicki, T.: Locally continuously perfect groups of homeomorphisms.Ann. Global Anal. Geom. 40 (2011), 191–202. MR 2811625, 10.1007/s10455-011-9253-5
Reference: [17] Siebenmann, L.C.: Deformation of homeomorphisms on stratified sets, 1, 2. 2, Comment. Math. Helv. 47 (1972), 123–163. MR 0319207, 10.1007/BF02566793
.

Files

Files Size Format View
ArchMathRetro_055-2019-5_7.pdf 477.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo