Previous |  Up |  Next

Article

Title: Axiom $T_D$ and the Simmons sublocale theorem (English)
Author: Picado, Jorge
Author: Pultr, Aleš
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 4
Year: 2019
Pages: 541-551
Summary lang: English
.
Category: math
.
Summary: More precisely, we are analyzing some of H. Simmons, S.\,B. Niefield and K.\,I. Rosenthal results concerning sublocales induced by subspaces. H. Simmons was concerned with the question when the coframe of sublocales is Boolean; he recognized the role of the axiom $T_D$ for the relation of certain degrees of scatteredness but did not emphasize its role in the relation {between} sublocales and subspaces. S.\,B. Niefield and K.\,I. Rosenthal just mention this axiom in a remark about Simmons' result. In this paper we show that the role of $T_D$ in this question is crucial. Concentration on the properties of $T_D$-spaces and technique of sublocales in this context allows us to present a simple, transparent and choice-free proof of the scatteredness theorem. (English)
Keyword: frame
Keyword: locale
Keyword: sublocale
Keyword: coframe of sublocales
Keyword: spatial sublocale
Keyword: induced sublocale
Keyword: $T_D$-separation
Keyword: covered prime element
Keyword: scattered space
Keyword: weakly scattered space
MSC: 06D22
MSC: 54D10
idZBL: Zbl 07177889
idMR: MR4061362
DOI: 10.14712/1213-7243.2019.030
.
Date available: 2020-02-10T16:50:12Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147971
.
Reference: [1] Aull C. E., Thron W. J.: Separation axioms between $T_0$ and $T_1$.Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 26–37. MR 0138082, 10.1016/S1385-7258(62)50003-6
Reference: [2] Banaschewski B., Pultr A.: Variants of openness.Appl. Categ. Structures 2 (1994), no. 4, 331–350. MR 1300720, 10.1007/BF00873038
Reference: [3] Banaschewski B., Pultr A.: Pointfree aspects of the $T_D$ axiom of classical topology.Quaest. Math. 33 (2010), no. 3, 369–385. MR 2755527, 10.2989/16073606.2010.507327
Reference: [4] Banaschewski B., Pultr A.: On covered prime elements and complete homomorphisms of frames.Quaest. Math. 37 (2014), no. 3, 451–454. MR 3285298, 10.2989/16073606.2013.780000
Reference: [5] Johnstone P. T.: Stone Spaces.Cambridge Studies in Advanced Mathematics, 3, Cambridge University Press, Cambridge, 1982. Zbl 0586.54001, MR 0698074
Reference: [6] Liu Y., Luo M.: $T_D$ property and spatial sublocales.Acta Math. Sinica (N.S.) 11 (1995), no. 3, 324–336. MR 1418002, 10.1007/BF02265398
Reference: [7] Niefield S. B., Rosenthal K. I.: Spatial sublocales and essential primes.Topology Appl. 26 (1987), no. 3, 263–269. MR 0904472, 10.1016/0166-8641(87)90046-0
Reference: [8] Picado J., Pultr A.: Frames and Locales, Topology without Points.Frontiers in Mathematics, 28, Springer, Basel, 2012. MR 2868166
Reference: [9] Pultr A., Tozzi A.: Separation axioms and frame representation of some topological facts.Appl. Categ. Structures 2 (1994), no. 1, 107–118. MR 1283218, 10.1007/BF00878507
Reference: [10] Simmons H.: The lattice theoretic part of topological separation properties.Proc. Edinburgh Math. Soc. (2) 21 (1978/79), no. 1, 41–48. MR 0493959
Reference: [11] Simmons H.: Spaces with Boolean assemblies.Colloq. Math. 43 (1980), no. 1, 23–29. MR 0615967, 10.4064/cm-43-1-23-39
Reference: [12] Thron W. J.: Lattice-equivalence of topological spaces.Duke Math. J. 29 (1962), 671–679. MR 0146787, 10.1215/S0012-7094-62-02968-X
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-4_9.pdf 278.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo