Previous |  Up |  Next

Article

Title: Split extensions and semidirect products of unitary magmas (English)
Author: Gran, Marino
Author: Janelidze, George
Author: Sobral, Manuela
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 4
Year: 2019
Pages: 509-527
Summary lang: English
.
Category: math
.
Summary: We develop a theory of split extensions of unitary magmas, which includes defining such extensions and describing them via suitably defined semidirect product, yielding an equivalence between the categories of split extensions and of (suitably defined) actions of unitary magmas on unitary magmas. The class of split extensions is pullback stable but not closed under composition. We introduce two subclasses of it that have both of these properties. (English)
Keyword: unitary magma
Keyword: split extension
Keyword: firm split extension
Keyword: semidirect product
MSC: 08C05
MSC: 18G50
MSC: 20N02
idZBL: Zbl 07177886
idMR: MR4061359
DOI: 10.14712/1213-7243.2020.001
.
Date available: 2020-02-10T16:49:22Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147973
.
Reference: [1] Borceux F., Bourn D.: Mal'cev, Protomodular, Homological and Semi-abelian Categories.Mathematics and Its Applications, 566, Kluwer Academic Publishers, Dordrecht, 2004. MR 2044291
Reference: [2] Borceux F., Janelidze G., Kelly G. M.: Internal object actions.Comment. Math. Univ. Carolin. 46 (2005), no. 2, 235–255. Zbl 1121.18004, MR 2176890
Reference: [3] Bourn D.: Normalization equivalence, kernel equivalence and affine categories.Category Theory, Como, 1990, Lecture Notes in Math., 1488, Springer, Berlin, 1991, pages 43–62. MR 1173004, 10.1007/BFb0084212
Reference: [4] Bourn D., Janelidze G.: Protomodularity, descent, and semidirect products.Theory Appl. Categ. 4 (1998), no. 2, 37–46. MR 1615341
Reference: [5] Bourn D., Martins-Ferreira N., Montoli A., Sobral M.: Schreier Split Epimorphisms in Monoids and in Semirings.Textos de Matemática, Série B, 45, Universidade de Coimbra, Departamento de Matemática, Coimbra, 2013. MR 3157484
Reference: [6] Bourn D., Martins-Ferreira N., Montoli A., Sobral M.: Monoids and pointed S-protomodular categories.Homology Homotopy Appl. 18 (2016), no. 1, 151–172. MR 3485342
Reference: [7] Cigoli A., Mantovani S., Metere G.: A push forward construction and the comprehensive factorization for internal crossed modules.Appl. Categ. Structures 22 (2014), no. 5–6, 931–960. MR 3275283, 10.1007/s10485-013-9348-1
Reference: [8] Janelidze G., Márki L., Tholen W.: Semi-abelian categories.J. Pure Appl. Algebra 168 (2002), no. 2–3, 367–386. Zbl 0993.18008, MR 1887164, 10.1016/S0022-4049(01)00103-7
Reference: [9] Mac Lane S.: Categories for the Working Mathematician.Graduate Texts in Mathematics, 5, Springer, New York, 1998. Zbl 0906.18001, MR 1712872
Reference: [10] Martins-Ferreira N., Montoli A.: On the “Smith is Huq" condition in S-protomodular categories.Appl. Categ. Structures 25 (2017), no. 1, 59–75. MR 3606494, 10.1007/s10485-015-9411-1
Reference: [11] Martins-Ferreira N., Montoli A., Sobral M.: Semidirect products and crossed modules in monoids with operations.J. Pure Appl. Algebra 217 (2013), no. 2, 334–347. MR 2969256, 10.1016/j.jpaa.2012.06.022
Reference: [12] Martins-Ferreira N., Montoli A., Sobral M.: The nine lemma and the push forward construction for special Schreier extensions of monoids with operations.Semigroup Forum 97 (2018), no. 2, 325–352. MR 3852777, 10.1007/s00233-018-9962-1
Reference: [13] Orzech G.: Obstruction theory in algebraic categories I.J. Pure Appl. Algebra 2 (1972), 287–314. MR 0323859, 10.1016/0022-4049(72)90008-4
Reference: [14] Patchkoria A.: Crossed semimodules and Schreier internal categories in the category of monoids.Georgian Math. J. 5 (1998), no. 6, 575–581. MR 1654760, 10.1023/B:GEOR.0000008133.94825.60
Reference: [15] Porter T.: Extensions, crossed modules and internal categories in categories of groups with operations.Proc. Edinburgh Math. Soc. (2) 30 (1987), no. 3, 373–381. MR 0908444
Reference: [16] Yoneda N.: On $ Ext$ and exact sequences.J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 507–576. MR 0225854
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-4_6.pdf 314.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo