Title:
|
Accessible set functors are universal (English) |
Author:
|
Barto, Libor |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
60 |
Issue:
|
4 |
Year:
|
2019 |
Pages:
|
497-508 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is shown that every concretizable category can be fully embedded into the category of accessible set functors and natural transformations. (English) |
Keyword:
|
set functor |
Keyword:
|
universal category |
Keyword:
|
full embedding |
MSC:
|
08B05 |
MSC:
|
18A22 |
MSC:
|
18A25 |
MSC:
|
18B15 |
idZBL:
|
Zbl 07177885 |
idMR:
|
MR4061358 |
DOI:
|
10.14712/1213-7243.2019.028 |
. |
Date available:
|
2020-02-10T16:49:05Z |
Last updated:
|
2022-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147975 |
. |
Reference:
|
[1] Adámek J., Gumm H. P., Trnková V.: Presentation of set functors: a coalgebraic perspective.J. Logic Comput. 20 (2010), no. 5, 991–1015. MR 2725166, 10.1093/logcom/exn090 |
Reference:
|
[2] Adámek J., Porst H. E.: From varieties of algebras to covarieties of coalgebras.Coalgebraic Methods in Computer Science (a Satellite Event of ETAPS 2001), Electronic Notes in Theoretical Computer Science 44 (2001), no. 1, 27–46. |
Reference:
|
[3] Barto L.: Finitary set endofunctors are alg-universal.Algebra Universalis 57 (2007), no. 1, 15–26. MR 2326923, 10.1007/s00012-007-2011-7 |
Reference:
|
[4] Barto L.: The category of varieties and interpretations is alg-universal.J. Pure Appl. Algebra 211 (2007), no. 3, 721–731. MR 2344225, 10.1016/j.jpaa.2007.04.001 |
Reference:
|
[5] Barto L., Bulín J., Krokhin A., Opršal J.: Algebraic approach to promise constraint satisfaction.available at arXiv:1811.00970v3 [cs.CC] (2019), 73 pages. MR 4003368 |
Reference:
|
[6] Barto L., Krokhin A., Willard R.: Polymorphisms, and how to use them.The Constraint Satisfaction Problem: Complexity and Approximability, Dagstuhl Follow-Ups, 7, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017, pages 1–44. MR 3631047 |
Reference:
|
[7] Barto L., Opršal J., Pinsker M.: The wonderland of reflections.Israel J. Math. 223 (2018), no. 1, 363–398. MR 3773066, 10.1007/s11856-017-1621-9 |
Reference:
|
[8] Barto L., Zima P.: Every group is representable by all natural transformations of some set-functor.Theory Appl. Categ. 14 (2005), no. 13, 294–309. MR 2182678 |
Reference:
|
[9] Bulatov A. A.: A dichotomy theorem for nonuniform CSPs.58th Annual IEEE Symposium on Foundations of Computer Science---FOCS 2017, IEEE Computer Soc., Los Alamitos, 2017, pages 319–330. MR 3734240 |
Reference:
|
[10] Freyd P. J.: Concreteness.J. Pure Appl. Algebra 3 (1973), 171–191. MR 0322006, 10.1016/0022-4049(73)90031-5 |
Reference:
|
[11] García O. C., Taylor W.: The lattice of interpretability types of varieties.Mem. Amer. Math. Soc. 50 (1984), no. 305, 125 pages. MR 0749524 |
Reference:
|
[12] Hedrlín Z., Pultr A.: On full embeddings of categories of algebras.Illinois J. Math. 10 (1966), 392–406. MR 0191858, 10.1215/ijm/1256054991 |
Reference:
|
[13] Isbell J. R.: Two set-theoretical theorems in categories.Fund. Math. 53 (1963), 43–49. MR 0156884, 10.4064/fm-53-1-43-49 |
Reference:
|
[14] Koubek V.: Set functors.Comment. Math. Univ. Carolin. 12 (1971), 175–195. MR 0286860 |
Reference:
|
[15] Kučera L.: Every category is a factorization of a concrete one.J. Pure Appl. Algebra 1 (1971), no. 4, 373–376. MR 0299548, 10.1016/0022-4049(71)90004-1 |
Reference:
|
[16] Pultr A., Trnková V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories.North-Holland Mathematical Library, 22, North-Holland Publishing, Amsterdam, 1980. MR 0563525 |
Reference:
|
[17] Rutten J. J. M. M.: Universal coalgebra: a theory of systems.Modern Algebra and Its Applications, Nashville 1996, Theoret. Comput. Sci. 249 (2000), no. 1, 3–80. MR 1791953, 10.1016/S0304-3975(00)00056-6 |
Reference:
|
[18] Trnková V.: Universal categories.Comment. Math. Univ. Carolinae 7 (1966), 143–206. MR 0202808 |
Reference:
|
[19] Trnková V.: Some properties of set functors.Comment. Math. Univ. Carolinae 10 (1969), 323–352. MR 0252474 |
Reference:
|
[20] Trnková V.: On descriptive classification of set-functors. I.Comment. Math. Univ. Carolinae 12 (1971), 143–174. MR 0294445 |
Reference:
|
[21] Trnková V.: On descriptive classification of set-functors. II.Comment. Math. Univ. Carolinae 12 (1971), 345–357. MR 0294446 |
Reference:
|
[22] Trnková V.: Universal concrete categories and functors.Cahiers Topologie Géom. Différentielle Catég. 34 (1993), no. 3, 239–256. MR 1239471 |
Reference:
|
[23] Trnková V.: Amazingly extensive use of Cook continuum.Math. Japon. 51 (2000), no. 3, 499–549. MR 1757312 |
Reference:
|
[24] Trnková V., Barkhudaryan A.: Some universal properties of the category of clones.Algebra Universalis 47 (2002), no. 3, 239–266. MR 1918729, 10.1007/s00012-002-8188-x |
Reference:
|
[25] Vinárek J.: A new proof of the Freyd's theorem.J. Pure Appl. Algebra 8 (1976), no. 1, 1–4. MR 0399206, 10.1016/0022-4049(76)90019-0 |
Reference:
|
[26] Zhuk D.: A proof of CSP dichotomy conjecture.2017 58th Annual IEEE Symposium on Foundations of Computer Science---FOCS 2017, IEEE Computer Soc., Los Alamitos, 2017, pages 331–342. MR 3734241 |
. |