Previous |  Up |  Next

Article

Title: Colimit-dense subcategories (English)
Author: Adámek, Jiří
Author: Brooke-Taylor, Andrew D.
Author: Campion, Tim
Author: Positselski, Leonid
Author: Rosický, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 4
Year: 2019
Pages: 447-462
Summary lang: English
.
Category: math
.
Summary: Among cocomplete categories, the locally presentable ones can be defined as those with a strong generator consisting of presentable objects. Assuming Vopěnka's Principle, we prove that a cocomplete category is locally presentable if and only if it has a colimit dense subcategory and a generator consisting of presentable objects. We further show that a $3$-element set is colimit-dense in ${\mathbf{Set}}^{\rm op}$, and spaces of countable dimension are colimit-dense in ${\mathbf{Vec}}^{\rm op}$. (English)
Keyword: locally presentable category
Keyword: colimit-dense subcategory
Keyword: Vopěnka's Principle
MSC: 03E55
MSC: 18A30
MSC: 18C35
idZBL: Zbl 07177882
idMR: MR4061355
DOI: 10.14712/1213-7243.2019.021
.
Date available: 2020-02-10T16:48:15Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147976
.
Reference: [1] Adámek J., Herrlich H., Reiterman J.: Cocompleteness almost implies completeness.Proc. Conf. Categorical Topology and Its Relation to Analysis, Algebra and Combinatorics, Prague, 1988, World Sci. Publ., Teaneck (1989), pages 246–256. MR 1047905
Reference: [2] Adámek J., Rosický J.: Locally Presentable and Accessible Categories.London Mathematical Society Lecture Note Series, 189, Cambridge University Press, Cambridge, 1994. MR 1294136
Reference: [3] Bardavid C.: Profinite completion and double-dual: isomorphisms and counter-examples.available at arXiv:0801.2955v1 [math.GR] (2008), 8 pages.
Reference: [4] Benson D. J.: Infinite dimensional modules for finite groups.Infinite Length Modules, Bielefeld, 1998, Trends Math., Birkhäuser, Basel, 2000, pages 251–272. MR 1789219
Reference: [5] Börger R.: Coproducts and ultrafilters.J. Pure Appl. Algebra 46 (1987), no. 1, 35–47. MR 0894390, 10.1016/0022-4049(87)90041-7
Reference: [6] Galvin F., Horn A.: Operations preserving all equivalence relations.Proc. Amer. Math. Soc. 24 (1970), 521–523. MR 0258713, 10.1090/S0002-9939-1970-0258713-1
Reference: [7] Isbell J. R.: Adequate subcategories.Illinois J. Math. 4 (1960), 541–552. MR 0175954, 10.1215/ijm/1255456274
Reference: [8] Isbell J. R.: Subobjects, adequacy, completeness and categories of algebras.Rozprawy Mat. 36 (1964), 33 pages. MR 0163939
Reference: [9] Kennison J. F., Gildenhuys D.: Equational completion, model induced triples and pro-objects.J. Pure Appl. Algebra 1 (1971), no. 4, 317–346. MR 0306289, 10.1016/0022-4049(71)90001-6
Reference: [10] Leinster T.: Codensity and the ultrafilter monad.Theory Appl. Categ. 28 (2013), no. 13, 332–370. MR 3080612
Reference: [11] Rosický J.: Codensity and binding categories.Comment. Math. Univ. Carolinae 16 (1975), no. 3, 515–529. MR 0376800
Reference: [12] Rosický J., Trnková V., Adámek J.: Unexpected properties of locally presentable categories.Algebra Universalis 27 (1990), no. 2, 153–170. MR 1037859, 10.1007/BF01182450
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-4_2.pdf 325.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo