Title:
|
Colimit-dense subcategories (English) |
Author:
|
Adámek, Jiří |
Author:
|
Brooke-Taylor, Andrew D. |
Author:
|
Campion, Tim |
Author:
|
Positselski, Leonid |
Author:
|
Rosický, Jiří |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
60 |
Issue:
|
4 |
Year:
|
2019 |
Pages:
|
447-462 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Among cocomplete categories, the locally presentable ones can be defined as those with a strong generator consisting of presentable objects. Assuming Vopěnka's Principle, we prove that a cocomplete category is locally presentable if and only if it has a colimit dense subcategory and a generator consisting of presentable objects. We further show that a $3$-element set is colimit-dense in ${\mathbf{Set}}^{\rm op}$, and spaces of countable dimension are colimit-dense in ${\mathbf{Vec}}^{\rm op}$. (English) |
Keyword:
|
locally presentable category |
Keyword:
|
colimit-dense subcategory |
Keyword:
|
Vopěnka's Principle |
MSC:
|
03E55 |
MSC:
|
18A30 |
MSC:
|
18C35 |
idZBL:
|
Zbl 07177882 |
idMR:
|
MR4061355 |
DOI:
|
10.14712/1213-7243.2019.021 |
. |
Date available:
|
2020-02-10T16:48:15Z |
Last updated:
|
2022-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147976 |
. |
Reference:
|
[1] Adámek J., Herrlich H., Reiterman J.: Cocompleteness almost implies completeness.Proc. Conf. Categorical Topology and Its Relation to Analysis, Algebra and Combinatorics, Prague, 1988, World Sci. Publ., Teaneck (1989), pages 246–256. MR 1047905 |
Reference:
|
[2] Adámek J., Rosický J.: Locally Presentable and Accessible Categories.London Mathematical Society Lecture Note Series, 189, Cambridge University Press, Cambridge, 1994. MR 1294136 |
Reference:
|
[3] Bardavid C.: Profinite completion and double-dual: isomorphisms and counter-examples.available at arXiv:0801.2955v1 [math.GR] (2008), 8 pages. |
Reference:
|
[4] Benson D. J.: Infinite dimensional modules for finite groups.Infinite Length Modules, Bielefeld, 1998, Trends Math., Birkhäuser, Basel, 2000, pages 251–272. MR 1789219 |
Reference:
|
[5] Börger R.: Coproducts and ultrafilters.J. Pure Appl. Algebra 46 (1987), no. 1, 35–47. MR 0894390, 10.1016/0022-4049(87)90041-7 |
Reference:
|
[6] Galvin F., Horn A.: Operations preserving all equivalence relations.Proc. Amer. Math. Soc. 24 (1970), 521–523. MR 0258713, 10.1090/S0002-9939-1970-0258713-1 |
Reference:
|
[7] Isbell J. R.: Adequate subcategories.Illinois J. Math. 4 (1960), 541–552. MR 0175954, 10.1215/ijm/1255456274 |
Reference:
|
[8] Isbell J. R.: Subobjects, adequacy, completeness and categories of algebras.Rozprawy Mat. 36 (1964), 33 pages. MR 0163939 |
Reference:
|
[9] Kennison J. F., Gildenhuys D.: Equational completion, model induced triples and pro-objects.J. Pure Appl. Algebra 1 (1971), no. 4, 317–346. MR 0306289, 10.1016/0022-4049(71)90001-6 |
Reference:
|
[10] Leinster T.: Codensity and the ultrafilter monad.Theory Appl. Categ. 28 (2013), no. 13, 332–370. MR 3080612 |
Reference:
|
[11] Rosický J.: Codensity and binding categories.Comment. Math. Univ. Carolinae 16 (1975), no. 3, 515–529. MR 0376800 |
Reference:
|
[12] Rosický J., Trnková V., Adámek J.: Unexpected properties of locally presentable categories.Algebra Universalis 27 (1990), no. 2, 153–170. MR 1037859, 10.1007/BF01182450 |
. |