Previous |  Up |  Next

Article

Title: Continuous images of Lindelöf $p$-groups, $\sigma $-compact groups, and related results (English)
Author: Arhangel'skii, Alexander V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 4
Year: 2019
Pages: 463-471
Summary lang: English
.
Category: math
.
Summary: It is shown that there exists a $\sigma $-compact topological group which cannot be represented as a continuous image of a Lindelöf $p$-group, see Example 2.8. This result is based on an inequality for the cardinality of continuous images of Lindelöf $p$-groups (Theorem 2.1). A closely related result is Corollary 4.4: if a space $Y$ is a continuous image of a Lindelöf $p$-group, then there exists a covering $\gamma $ of $Y$ by dyadic compacta such that $|\gamma |\leq 2^\omega $. We also show that if a homogeneous compact space $Y$ is a continuous image of a $cdc$-group $G$, then $Y$ is a dyadic compactum (Corollary 3.11). (English)
Keyword: Lindelöf $p$-group
Keyword: homogeneous space
Keyword: Lindelöf $\Sigma $-space
Keyword: dyadic compactum
Keyword: countable tightness
Keyword: $\sigma $-compact
Keyword: $cdc$-group
Keyword: $p$-space
MSC: 54A25
MSC: 54B05
idZBL: Zbl 07177883
idMR: MR4061356
DOI: 10.14712/1213-7243.2019.027
.
Date available: 2020-02-10T16:48:32Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147979
.
Reference: [1] Arhangel'skiĭ A. V.: A class of spaces which contains all metric and all locally compact spaces.Mat. Sb. (N.S.) 67(109) (1965), 55–88 (Russian); English translation in Amer. Math. Soc. Transl. 92 (1970), 1–39. MR 0190889
Reference: [2] Arhangel'skii A. V.: The power of bicompacta with first axiom of countability.Dokl. Akad. Nauk SSSR 187 (1969), 967–970 (Russian); English translation in Soviet Math. Dokl. 10 (1969), 951–955. MR 0251695
Reference: [3] Arhangel'skiĭ A. V.: Topological homogeneity. Topological groups and their continuous images.Uspekhi Mat. Nauk 42 (1987), no. 2(254), 69–105 (Russian); English translation in Russian Math. Surveys 42 (1987), 83–131. MR 0898622
Reference: [4] Arhangel'skiĭ A. V.: Topological Function Spaces.Mathematics and Its Applications (Soviet Series), 78, Kluwer Academic Publishers Group, Dordrecht, 1992. MR 1144519, 10.1007/978-94-011-2598-7_4
Reference: [5] Arhangel'skii A. V., van Mill J.: Topological homogeneity.Recent Progress in General Topology, III, Atlantis Press, Paris, 2014, 1–68. MR 3204728
Reference: [6] Arhangel'skiĭ A. V., Ponomarev V. I.: Dyadic bicompacta.Dokl. Akad. Nauk SSSR 182 (1968), 993–996 (Russian); English translation in Soviet Math. Dokl. 9 (1968), 1220–1224. MR 0235518
Reference: [7] Arhangel'skii A., Tkachenko M.: Topological Groups and Related Structures.Atlantis Studies in Mathematics, 1, Atlantis Press, Paris, World Scientific Publishing, Hackensack, 2008. MR 2433295
Reference: [8] Čoban M. M.: Topological structure of subsets of topological groups and their quotient spaces.Topological Structures and Algebraic Systems, Mat. Issled. Vyp. 44 (1977), 117–163, 181 (Russian). MR 0492040
Reference: [9] Engelking R.: General Topology.Mathematical Monographs, 60, PWN—Polish Scientific Publishers, Warsaw, 1977. Zbl 0684.54001, MR 0500780
Reference: [10] Nagami K.: $\Sigma $-spaces.Fund. Math. 65 (1969), 169–192. Zbl 0181.50701, MR 0257963
Reference: [11] Rančin D. V.: Tightness, sequentiality, and closed coverings.Dokl. Akad. Nauk SSSR 232 (1977), no. 5, 1015–1018 (Russian); English translation in Soviet Math. Dokl. 18 (1977), no. 1, 196–200. MR 0436074
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-4_3.pdf 257.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo