Previous |  Up |  Next

Article

Title: On strongly affine extensions of commutative rings (English)
Author: Zeidi, Nabil
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 1
Year: 2020
Pages: 251-260
Summary lang: English
.
Category: math
.
Summary: A ring extension $R\subseteq S$ is said to be strongly affine if each $R$-subalgebra of $S$ is a finite-type $R$-algebra. In this paper, several characterizations of strongly affine extensions are given. For instance, we establish that if $R$ is a quasi-local ring of finite dimension, then $R\subseteq S$ is integrally closed and strongly affine if and only if $R\subseteq S$ is a Prüfer extension (i.e. $(R,S)$ is a normal pair). As a consequence, the equivalence of strongly affine extensions, quasi-Prüfer extensions and INC-pairs is shown. Let $G$ be a subgroup of the automorphism group of $S$ such that $R$ is invariant under action by $G$. If $R\subseteq S$ is strongly affine, then $R^G\subseteq S^G$ is strongly affine under some conditions. (English)
Keyword: strongly affine
Keyword: Prüfer extension
Keyword: finitely many intermediate algebras property extension
Keyword: finite chain propery extension
Keyword: normal pair
Keyword: integrally closed pair
Keyword: ring of invariants
MSC: 13A15
MSC: 13A50
MSC: 13B02
MSC: 13E05
idZBL: 07217132
idMR: MR4078357
DOI: 10.21136/CMJ.2019.0240-18
.
Date available: 2020-03-10T10:19:26Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148053
.
Reference: [1] Anderson, D. D., Dobbs, D. E., Mullins, B.: The primitive element theorem for commutative algebra.Houston J. Math. 25 (1999), 603-623 corrigendum ibid. 28 217-219 2002. Zbl 0999.13003, MR 1829123
Reference: [2] Ayache, A., Dobbs, D. E.: Finite maximal chains of commutative rings.J. Algebra Appl. 14 (2015), Article ID 1450075, 27 pages. Zbl 1310.13012, MR 3257816, 10.1142/S0219498814500753
Reference: [3] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings.Math. Z. 225 (1997), 49-65. Zbl 0868.13007, MR 1451331, 10.1007/PL00004598
Reference: [4] Nasr, M. Ben, Zeidi, N.: A special chain Theorem in the set of intermediate rings.J. Algebra Appl. 16 (2017), Article ID 1750185, 11 pages. Zbl 1390.13028, MR 3703540, 10.1142/S0219498817501857
Reference: [5] Davis, E. D.: Overrings of commutative rings III: Normal pairs.Trans. Amer. Math. Soc. 182 (1973), 175-185. Zbl 0272.13004, MR 325599, 10.1090/S0002-9947-1973-0325599-3
Reference: [6] Dobbs, D. E.: Lying-over pairs of commutative rings.Can. J. Math. 33 (1981), 454-475. Zbl 0466.13002, MR 617636, 10.4153/CJM-1981-040-5
Reference: [7] Dobbs, D. E.: On characterizations of integrality involving the lying-over and incomparability properties.J. Comm. Algebra 1 (2009), 227-235. Zbl 1184.13023, MR 2504933, 10.1216/JCA-2009-1-2-227
Reference: [8] Dobbs, D. E., Mullins, B., Picavet, G., Picavet-L'Hermitte, M.: On the FIP property for extensions of commutative rings.Commun. Algebra 33 (2005), 3091-3119. Zbl 1120.13009, MR 2175382, 10.1081/AGB-200066123
Reference: [9] Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M.: Characterizing the ring extensions that satisfy FIP or FCP.J. Algebra 371 (2012), 391-429. Zbl 1271.13022, MR 2975403, 10.1016/j.jalgebra.2012.07.055
Reference: [10] Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M.: Transfer results for the FIP and FCP properties of ring extensions.Commun. Algebra 43 (2015), 1279-1316. Zbl 1317.13016, MR 3298132, 10.1080/00927872.2013.856440
Reference: [11] Dobbs, D. E., Shapiro, J.: Descent of divisibility properties of integral domains to fixed rings.Houston J. Math. 32 (2006), 337-353. Zbl 1109.13004, MR 2219318
Reference: [12] Ferrand, D., Olivier, J.-P.: Homomorphismes minimaux d'anneaux.J. Algebra 16 (1970), 461-471 French. Zbl 0218.13011, MR 271079, 10.1016/0021-8693(70)90020-7
Reference: [13] Gilmer, R.: Multiplicative Ideal Theory.Pure and Applied Mathematics 12, Marcel Dekker, New York (1972). Zbl 0248.13001, MR 0427289
Reference: [14] Gilmer, R.: Some finiteness conditions on the set of overrings of an integral domain.Proc. Am. Math. Soc. 131 (2003), 2337-2346. Zbl 1017.13009, MR 1974630, 10.1090/S0002-9939-02-06816-8
Reference: [15] Gilmer, R., Heinzer, W.: Finitely generated intermediate rings.J. Pure Appl. Algebra 37 (1985), 237-264. Zbl 0564.13009, MR 797865, 10.1016/0022-4049(85)90101-X
Reference: [16] Gilmer, R., Hoffmann, J.: A characterization of Prüfer domains in terms of polynomials.Pac. J. Math. 60 (1975), 81-85. Zbl 0307.13011, MR 412175, 10.2140/pjm.1975.60.81
Reference: [17] Jaballah, A.: Finiteness of the set of intermediary rings in normal pairs.Saitama Math. J. 17 (1999), 59-61. Zbl 1073.13500, MR 1740247
Reference: [18] Jaballah, A.: Ring extensions with some finiteness conditions on the set of intermediate rings.Czech. Math. J. 60 (2010), 117-124. Zbl 1224.13011, MR 2595076, 10.1007/s10587-010-0002-x
Reference: [19] Kaplansky, I.: Commutative Rings.University of Chicago Press, Chicago (1974). Zbl 0296.13001, MR 0345945
Reference: [20] Knebusch, M., Zhang, D.: Manis Valuations and Prüfer Extensions I: A New Chapter in Commutative Algebra.Lecture Notes in Mathematics 1791, Springer, Berlin (2002). Zbl 1033.13001, MR 1937245, 10.1007/b84018
Reference: [21] Kumar, R., Gaur, A.: On $\lambda$-extensions of commutative rings.J. Algebra Appl. 17 (2018), Article ID 1850063, 9 pages. Zbl 1395.13006, MR 3786742, 10.1142/S0219498818500639
Reference: [22] Papick, I. J.: Finite type extensions and coherence.Pac. J. Math. 78 (1978), 161-172. Zbl 0363.13010, MR 513292, 10.2140/pjm.1978.78.161
Reference: [23] Picavet, G., Picavet-L'Hermitte, M.: Some more combinatorics results on Nagata extensions.Palest. J. Math. 5 (2016), 49-62. Zbl 1346.13012, MR 3477615
Reference: [24] Picavet, G., Picavet-L'Hermitte, M.: Quasi-Prüfer extensions of rings.Rings, Polynomials and Modules M. Fontana et al. Springer, Cham (2017), 307-336. Zbl 1400.13012, MR 3751703, 10.1007/978-3-319-65874-2_16
Reference: [25] Schmidt, A.: Properties of Rings and of Ring Extensions That are Invariant Under Group Action. PhD Thesis.George Mason University, Spring (2015), Available at http://hdl.handle.net/1920/9627. MR 3389167
Reference: [26] Wadsworth, A. R.: Pairs of domains where all intermediate domains are Noetherian.Trans. Am. Math. Soc. 195 (1974), 201-211. Zbl 0294.13010, MR 349665, 10.1090/S0002-9947-1974-0349665-2
.

Files

Files Size Format View
CzechMathJ_70-2020-1_15.pdf 283.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo