Previous |  Up |  Next

Article

Title: An observation on spaces with a zeroset diagonal (English)
Author: Xuan, Wei-Feng
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 145
Issue: 1
Year: 2020
Pages: 15-18
Summary lang: English
.
Category: math
.
Summary: We say that a space $X$ has the discrete countable chain condition (DCCC for short) if every discrete family of nonempty open subsets of $X$ is countable. A space $X$ has a zeroset diagonal if there is a continuous mapping $f\colon X^2 \rightarrow [0,1]$ with $\Delta _X=f^{-1}(0)$, where $\Delta _X=\{(x,x)\colon x\in X\}$. In this paper, we prove that every first countable DCCC space with a zeroset diagonal has cardinality at most $\mathfrak c$. (English)
Keyword: first countable
Keyword: discrete countable chain condition
Keyword: zeroset diagonal
Keyword: cardinal
MSC: 54D20
MSC: 54E35
idZBL: 07217176
idMR: MR4088689
DOI: 10.21136/MB.2018.0016-18
.
Date available: 2020-03-12T08:17:58Z
Last updated: 2020-11-18
Stable URL: http://hdl.handle.net/10338.dmlcz/148060
.
Reference: [1] Arhangel'skii, A. V., Buzyakova, R. Z.: The rank of the diagonal and submetrizability.Commentat. Math. Univ. Carol. 47 (2006), 585-597. Zbl 1150.54335, MR 2337413
Reference: [2] Buzyakova, R. Z.: Observations on spaces with zeroset or regular $G_\delta$-diagonals.Commentat. Math. Univ. Carol. 46 (2005), 469-473. Zbl 1121.54051, MR 2174525
Reference: [3] Buzyakova, R. Z.: Cardinalities of ccc-spaces with regular $G_\delta$-diagonals.Topology Appl. 153 (2006), 1696-1698. Zbl 1094.54001, MR 2227022, 10.1016/j.topol.2005.06.004
Reference: [4] Engelking, R.: General Topology.Sigma Series in Pure Mathematics 6. Heldermann, Berlin (1989). Zbl 0684.54001, MR 1039321
Reference: [5] Ginsburg, J., Woods, R. G.: A cardinal inequality for topological spaces involving closed discrete sets.Proc. Am. Math. Soc. 64 (1977), 357-360. Zbl 0398.54002, MR 0461407, 10.2307/2041457
Reference: [6] Gotchev, I. S.: Cardinalities of weakly Lindelöf spaces with regular $G_\kappa$-diagonals.Available at https://arxiv.org/abs/1504.01785 (2015). MR 3958260
Reference: [7] Hodel, R. E.: Cardinal function. I.Handbook of Set-Theoretic Topology North-Holland, Amsterdam (1984), 1-61 K. Kunen et al. Zbl 0559.54003, MR 0776620, 10.1016/c2009-0-12309-7
Reference: [8] Shakhmatov, D.: No upper bound for cardinalities of Tychonoff c.c.c. spaces with a $G_\delta$-diagonal exists. An answer to J. Ginsburg and R. G. Woods' question.Commentat. Math. Univ. Carol. 25 (1984), 731-746. Zbl 0572.54003, MR 0782022
Reference: [9] Uspenskij, V. V.: A large $F_{\sigma}$-discrete Fréchet space having the Souslin property.Commentat. Math. Univ. Carol. 25 (1984), 257-260. Zbl 0553.54001, MR 0768812
Reference: [10] Wage, M. L., Fleissner, W. G., Reed, G. M.: Normality versus countable paracompactness in perfect spaces.Bull. Am. Math. Soc. 82 (1976), 635-639. Zbl 0332.54018, MR 0410665, 10.1090/S0002-9904-1976-14150-X
.

Files

Files Size Format View
MathBohem_145-2020-1_2.pdf 237.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo