Previous |  Up |  Next

Article

Title: Approximate biflatness and Johnson pseudo-contractibility of some Banach algebras (English)
Author: Sahami, Amir
Author: Omidi, Mohammad R.
Author: Ghaderi, Eghbal
Author: Zangeneh, Hamzeh
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 1
Year: 2020
Pages: 83-92
Summary lang: English
.
Category: math
.
Summary: We study the structure of Lipschitz algebras under the notions of approximate biflatness and Johnson pseudo-contractibility. We show that for a compact metric space $X$, the Lipschitz algebras ${\rm Lip}_{\alpha}(X)$ and ${\rm lip}_{\alpha}(X)$ are approximately biflat if and only if $X$ is finite, provided that $0<\alpha<1$. We give a necessary and sufficient condition that a vector-valued Lipschitz algebras is Johnson pseudo-contractible. We also show that some triangular Banach algebras are not approximately biflat. (English)
Keyword: approximate biflatness
Keyword: Johnson pseudo-contractibility
Keyword: Lipschitz algebra
Keyword: triangular Banach algebra
MSC: 46H05
MSC: 46H20
MSC: 46M10
idZBL: Zbl 07217160
idMR: MR4093431
DOI: 10.14712/1213-7243.2020.004
.
Date available: 2020-04-30T11:19:47Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148077
.
Reference: [1] Askari-Sayah M., Pourabbas A., Sahami A.: Johnson pseudo-contractibility of certain Banach algebras and their nilpotent ideals.Anal. Math. 45 (2019), no. 3, 461–473. MR 3995373, 10.1007/s10476-019-0840-1
Reference: [2] Bade W. G., Curtis P. C. Jr., Dales H. G.: Amenability and weak amenability for Beurling and Lipschitz algebras.Proc. London Math. Soc. (3) 55 (1987), no. 2, 359–377. MR 0896225
Reference: [3] Biyabani E., Rejali A.: Approximate and character amenability of vector-valued Lipschitz algebras.Bull. Korean Math. Soc. 55 (2018), no. 4, 1109–1124. MR 3845950
Reference: [4] Dales H. G.: Banach Algebras and Automatic Continuity.London Mathematical Society Monographs, New Series, 24, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 2000. MR 1816726
Reference: [5] Dashti M., Nasr-Isfahani R., Soltani Renani S.: Character amenability of Lipschitz algebras.Canad. Math. Bull. 57 (2014), no. 1, 37–41. MR 3150714, 10.4153/CMB-2012-015-3
Reference: [6] Ghahramani F., Zhang Y.: Pseudo-amenable and pseudo-contractible Banach algebras.Math. Proc. Camb. Philos. Soc. 142 (2007), 111–123. Zbl 1118.46046, MR 2296395, 10.1017/S0305004106009649
Reference: [7] Gourdeau F.: Amenability of Banach algebras.Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 2, 351–355. MR 0974991, 10.1017/S0305004100067840
Reference: [8] Gourdeau F.: Amenability of Lipschitz algebras.Math. Proc. Cambridge Philos. Soc. 112 (1992), no. 3, 581–588. MR 1178007, 10.1017/S0305004100071267
Reference: [9] Hu Z., Monfared M. S., Traynor T.: On character amenable Banach algebras.Studia Math. 193 (2009), no. 1, 53–78. MR 2506414, 10.4064/sm193-1-3
Reference: [10] Kaniuth E., Lau A. T., Pym J.: On $\phi$-amenability of Banach algebras.Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 1, 85–96. MR 2388235, 10.1017/S0305004107000874
Reference: [11] Kelley J. L.: General Topology.D. Van Nostrand Company, Toronto, 1955. Zbl 0518.54001, MR 0070144
Reference: [12] Runde V.: Lectures on Amenability.Lecture Notes in Mathematics, 1774, Springer, Berlin, 2002. MR 1874893
Reference: [13] Sahami A., Pourabbas A.: Johnson pseudo-contractibility of certain semigroup algebras.Semigroup Forum 97 (2018), no. 2, 203–213. MR 3852768, 10.1007/s00233-017-9912-3
Reference: [14] Sahami A., Pourabbas A.: Johnson pseudo-contractibility of various classes of Banach algebras.Bull. Belg. Math. Soc. Simon Stevin 25 (2018), no. 2, 171–182. MR 3819120, 10.36045/bbms/1530065007
Reference: [15] Samei E., Spronk N., Stokke R.: Biflatness and pseudo-amenability of Segal algebras.Canad. J. Math. 62 (2010), no. 4, 845–869. MR 2674704, 10.4153/CJM-2010-044-4
Reference: [16] Weaver N.: Lipschitz Algebras.World Scientific Publishing Co., River Edge, 1999. MR 1832645
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-1_8.pdf 270.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo