Previous |  Up |  Next

Article

Title: Vanishing conharmonic tensor of normal locally conformal almost cosymplectic manifold (English)
Author: Al-Hussaini, Farah H.
Author: Rustanov, Aligadzhi R.
Author: Abood, Habeeb M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 1
Year: 2020
Pages: 93-104
Summary lang: English
.
Category: math
.
Summary: The main purpose of the present paper is to study the geometric properties of the conharmonic curvature tensor of normal locally conformal almost cosymplectic manifolds (normal LCAC-manifold). In particular, three conhoronic invariants are distinguished with regard to the vanishing conharmonic tensor. Subsequentaly, three classes of normal LCAC-manifolds are established. Moreover, it is proved that the manifolds of these classes are $ \eta $-Einstein manifolds of type $ (\alpha,\beta) $. Furthermore, we have determined $ \alpha $ and $ \beta $ for each class. (English)
Keyword: normal locally conformal almost cosymplectic manifold
Keyword: conharmonic curvature tensor
Keyword: constant curvature
Keyword: $ \eta $-Einstein manifold
MSC: 53B35
MSC: 53C55
idZBL: Zbl 07217161
idMR: MR4093432
DOI: 10.14712/1213-7243.2020.008
.
Date available: 2020-04-30T11:21:03Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148078
.
Reference: [1] Abood H. M., Al-Hussaini F. H.: Locally conformal almost cosymplectic manifold of $\Phi$-holomorphic sectional conharmonic curvature tensor.Eur. J. Pure Appl. Math. 11 (2018), no. 3, 671–681. MR 3841377, 10.29020/nybg.ejpam.v11i3.3261
Reference: [2] Blair D. E.: The theory of quasi-Sasakian structures.J. Differential Geometry 1 (1967), 331–345. MR 0226538, 10.4310/jdg/1214428097
Reference: [3] Chinea D., Marrero J. C.: Conformal changes of almost cosymplectic manifolds.Demonstratio Math. 25 (1992), no. 3, 641–656. MR 1200763
Reference: [4] Goldberg S. I., Yano K.: Integrabilty of almost cosymplectic structures.Pacific J. Math. 31 (1969), 373–382. MR 0251678, 10.2140/pjm.1969.31.373
Reference: [5] Ishii Y.: On conharmonic transformations.Tensor (N.S.) 7 (1957), 73–80. MR 0102837
Reference: [6] Kharitonova S. V.: Curvature conharmonic tensor of normal locally conformal almost cosymplectic manifolds.Vestnik OSU 12(161) (2013), 182–186.
Reference: [7] Kirichenko V. F.: Methods of generalized Hermitian geometry in the theory of almost contact manifolds.Itogi Nauki i Tekhniki, Problems of geometry 18 (1986), 25–71, 195 (Russian); translated in J. Soviet Math. 42 (1988), no. 5, 1885–1919. MR 0895367
Reference: [8] Kirichenko V. F.: Differential–Geometry Structures on Manifolds.Printing House, Odessa, 2013 (Russian).
Reference: [9] Kirichenko V. F., Kharitonova S. V.: On the geometry of normal locally conformal almost cosymplectic manifolds.Mat. Zametki 91 (2012), no. 1, 40–53 (Russian); translated in Math. Notes 91 (2012), no. 1–2, 34–45. MR 3201391
Reference: [10] Kirichenko V. F., Rustanov A. R.: Differential Geometry of quasi Sasakian manifolds.Mat. Sb. 193 (2002), no. 8, 71–100 (Russian); translated in Sb. Math. 193 (2002), no. 7–8, 1173–1201. MR 1934545
Reference: [11] Olszak Z.: Locally conformal almost cosymplectic manifolds.Colloq. Math. 57 (1989), no. 1, 73–87. MR 1028604, 10.4064/cm-57-1-73-87
Reference: [12] Olszak Z., Roça R.: Normal locally conformal almost cosymplectic manifolds.Publ. Math. Debrecen 39 (1991), no. 3–4, 315–323. MR 1154263
Reference: [13] Sasaki S., Hatakeyama Y.: On differentiable manifolds with certain structures which are closely related to almost contact structures. II.Tohoku Math. J. (2) 13 (1961), 281–294. MR 0138065, 10.2748/tmj/1178244304
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-1_9.pdf 286.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo