Previous |  Up |  Next

Article

Title: A short note on $f$-biharmonic hypersurfaces (English)
Author: Perktaş, Selcen Y.
Author: Acet, Bilal E.
Author: Blaga, Adara M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 1
Year: 2020
Pages: 119-126
Summary lang: English
.
Category: math
.
Summary: In the present paper we give some properties of $f$-biharmonic hypersurfaces in real space forms. By using the $f$-biharmonic equation for a hypersurface of a Riemannian manifold, we characterize the $f$-biharmonicity of constant mean curvature and totally umbilical hypersurfaces in a Riemannian manifold and, in particular, in a real space form. As an example, we consider $f$-biharmonic vertical cylinders in $S^{2}\times \mathbb{R}$. (English)
Keyword: $f$-biharmonic maps
Keyword: $f$-biharmonic hypersurface
MSC: 53C25
MSC: 53C43
MSC: 58E20
idZBL: Zbl 07217163
idMR: MR4093434
DOI: 10.14712/1213-7243.2020.009
.
Date available: 2020-04-30T11:23:54Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148080
.
Reference: [1] Caddeo R., Montaldo S., Oniciuc C.: Biharmonic submanifolds of $S^3$.Internat. J. Math. 12 (2001), no. 8, 867–876. MR 1863283
Reference: [2] Chen B.-Y.: Some open problems and conjectures on submanifolds of finite type.Soochow J. Math. 17 (1991), no. 2, 169–188. MR 1143504
Reference: [3] Cieśliński J., Sym A., Wesselius W.: On the geometry of the inhomogeneous Heisenberg ferromagnet: nonintegrable case.J. Phys. A. 26 (1993), no. 6, 1353–1364. MR 1212007, 10.1088/0305-4470/26/6/017
Reference: [4] Eells J., Lemaire L.: A report on harmonic maps.Bull. London Math. Soc. 10 (1978), no. 1, 1–68. Zbl 0401.58003, MR 0495450, 10.1112/blms/10.1.1
Reference: [5] Eells J. Jr., Sampson J. H.: Harmonic mappings of the Riemannian manifolds.Amer. J. Math. 86 (1964), 109–160. MR 0164306, 10.2307/2373037
Reference: [6] Jiang G. Y.: $2$-harmonic isometric immersions between Riemannian manifolds.Chinese Ann. Math. Ser. A 7 (1986), no. 2, 130–144 (Chinese); English summary in Chinese Ann. Math. Ser. B 7 (1986), no. 2, 255. MR 0858581
Reference: [7] Jiang G. Y.: $2$-harmonic maps and their first and second variation formulas.Chinese Ann. Math. Ser. A. 7 (1986), no. 4, 389–402 (Chinese); English summary in Chinese Ann. Math. Ser. B 7 (1986), no. 4, 523. MR 0886529
Reference: [8] Keleş S., Perktaş S. Y., Kiliç E.: Biharmonic curves in Lorentzian para-Sasakian manifolds.Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 2, 325–344. MR 2666434
Reference: [9] Li Y., Wang Y.: Bubbling location for $F$-harmonic maps and inhomogeneous Landau-Lifshitz equations.Comment. Math. Helv. 81 (2006), no. 2, 433–448. MR 2225633
Reference: [10] Lu W.-J.: On $f$-bi-harmonic maps and bi-$f$-harmonic maps between Riemannian manifolds.Sci. China Math. 58 (2015), no. 7, 1483–1498. MR 3353985, 10.1007/s11425-015-4997-1
Reference: [11] Montaldo S., Oniciuc C.: A short survey on biharmonic maps between Riemannian manifolds.Rev. Un. Mat. Argentina 47 (2006), no. 2, 1–22. MR 2301373
Reference: [12] Ou Y.-L.: Biharmonic hypersurfaces in Riemannian manifolds.Pacific J. Math. 248 (2010), no. 1, 217–232. MR 2734173, 10.2140/pjm.2010.248.217
Reference: [13] Ou Y.-L.: Some constructions of biharmonic maps and Chen's conjecture on biharmonic hypersurfaces.J. Geom. Phys. 62 (2012), no. 4, 751–762. MR 2888980, 10.1016/j.geomphys.2011.12.014
Reference: [14] Ou Y.-L.: On $f$-biharmonic maps and $f$-biharmonic submanifolds.Pacific J. Math. 271 (2014), no. 2, 461–477. MR 3267537, 10.2140/pjm.2014.271.461
Reference: [15] Ou Y.-L., Tang L.: On the generalized Chen's conjecture on biharmonic submanifolds.Michigan Math. J. 61 (2012), no. 3, 531–542. MR 2975260, 10.1307/mmj/1347040257
Reference: [16] Ou Y.-L., Wang Z.-P.: Constant mean curvature and totally umbilical biharmonic surfaces in $3$-dimensional geometries.J. Geom. Phys. 61 (2011), no. 10, 1845–1853. MR 2822453, 10.1016/j.geomphys.2011.04.008
Reference: [17] Perktaş S. Y., Kiliç E.: Biharmonic maps between doubly warped product manifolds.Balkan J. Geom. Appl. 15 (2010), no. 2, 159–170. MR 2608547
Reference: [18] Perktaş S. Y., Kiliç E., Keleş S.: Biharmonic hypersurfaces of LP-Sasakian manifolds.An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N.S.) 57 (2011), no. 2, 387–408. MR 2933391
Reference: [19] Rimoldi M., Veronelli G.: Topology of steady and expanding gradient Ricci solitons via $f$-harmonic maps.Differetial. Geom. Appl. 31 (2013), no. 5, 623–638. MR 3093493, 10.1016/j.difgeo.2013.06.001
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-1_11.pdf 259.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo