Previous |  Up |  Next

Article

Title: On ideal theory of hoops (English)
Author: Aaly Kologani, Mona
Author: Borzooei, Rajab Ali
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 145
Issue: 2
Year: 2020
Pages: 141-162
Summary lang: English
.
Category: math
.
Summary: In this paper, we define and characterize the notions of (implicative, maximal, prime) ideals in hoops. Then we investigate the relation between them and prove that every maximal implicative ideal of a $\vee $-hoop with double negation property is a prime one. Also, we define a congruence relation on hoops by ideals and study the quotient that is made by it. This notion helps us to show that an ideal is maximal if and only if the quotient hoop is a simple MV-algebra. Also, we investigate the relationship between ideals and filters by exploiting the set of complements. (English)
Keyword: Hoop
Keyword: (implicative, maximal, prime) ideal
Keyword: MV-algebra
Keyword: Boolean algebra
MSC: 03G25
MSC: 06B99
idZBL: 07217186
idMR: MR4221826
DOI: 10.21136/MB.2019.0140-17
.
Date available: 2020-06-10T13:15:14Z
Last updated: 2021-04-19
Stable URL: http://hdl.handle.net/10338.dmlcz/148151
.
Reference: [1] Alavi, S. Z., Borzooei, R. A., Kologani, M. Aaly: Filter theory of pseudo hoop-algebras.Ital. J. Pure Appl. Math. 37 (2017), 619-632. Zbl 1388.06011, MR 3622960
Reference: [2] Saeid, A. Borumand, Motamed, S.: Some results in BL-algebras.Math. Log. Q. 55 (2009), 649-658. Zbl 1188.03047, MR 2582165, 10.1002/malq.200910025
Reference: [3] Borzooei, R. A., Kologani, M. Aaly: Filter theory of hoop-algebras.J. Adv. Res. Pure Math. 6 (2014), 72-86. MR 3297683, 10.5373/jarpm.1895.120113
Reference: [4] Borzooei, R. A., Kologani, M. Aaly: Stabilizer topology of hoops.J. Alg. Structures and Their Appl. 1 (2014), 35-48.
Reference: [5] Bosbach, B.: Komplementäre Halbgruppen. Axiomatik und Arithmetik.Fundam. Math. 64 (1969), 257-287 German. Zbl 0183.30603, MR 0260902, 10.4064/fm-64-3-257-287
Reference: [6] Bosbach, B.: Komplementäre Halbgruppen. Kongruenzen und Quotienten.Fundam. Math. 69 (1970), 1-14 German. Zbl 0263.20037, MR 0277452, 10.4064/fm-69-1-1-14
Reference: [7] Nola, A. Di, Leuştean, L.: Compact representations of BL-algebras.Arch. Math. Logic 42 (2003), 737-761. Zbl 1040.03048, MR 2020041, 10.1007/s00153-003-0178-y
Reference: [8] Esteva, F., Godo, L.: Monoidal t-norm based logic, towards a logic for left-continuous t-norms.Fuzzy Sets Syst. 124 (2001), 271-288. Zbl 0994.03017, MR 1860848, 10.1016/S0165-0114(01)00098-7
Reference: [9] Georgescu, G., Leuştean, L., Preoteasa, V.: Pseudo-hoops.J. Mult.-Val. Log. Soft Comput. 11 (2005), 153-184. Zbl 1078.06007, MR 2162590
Reference: [10] Hájek, P.: Mathematics of Fuzzy Logic.Trends in Logic-Studia Logica Library 4. Kluwer Academic Publishers, Dordrecht (1998). Zbl 0937.03030, MR 1900263, 10.1007/978-94-011-5300-3
Reference: [11] Kondo, M., Dudek, W. A.: Filter theory of BL-algebras.Soft Comput. 12 (2008), 419-423. Zbl 1165.03056, 10.1007/s00500-007-0178-7
Reference: [12] Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Logic Without Contraction.Japan Advanced Institute of Science and Technology (2001).
Reference: [13] Namdar, A., Borzooei, R. A., Saeid, A. Borumand, Kologani, M. Aaly: Some results in hoop algebras.J. Intell. Fuzzy Syst. 32 (2017), 1805-1813. Zbl 1375.06015, 10.3233/JIFS-152553
.

Files

Files Size Format View
MathBohem_145-2020-2_3.pdf 357.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo